BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23843528)

  • 1. Emergence of deletions during treadmill locomotion as a function of supraspinal and sensory inputs.
    Martinez M; Tuznik M; Delivet-Mongrain H; Rossignol S
    J Neurosci; 2013 Jul; 33(28):11599-605. PubMed ID: 23843528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator.
    Lafreniere-Roula M; McCrea DA
    J Neurophysiol; 2005 Aug; 94(2):1120-32. PubMed ID: 15872066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
    Rybak IA; Shevtsova NA; Lafreniere-Roula M; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):617-39. PubMed ID: 17008376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chapter 2--the spinal generation of phases and cycle duration.
    Gossard JP; Sirois J; Noué P; Côté MP; Ménard A; Leblond H; Frigon A
    Prog Brain Res; 2011; 188():15-29. PubMed ID: 21333800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input.
    Edgerton VR; Roy RR; Hodgson JA; Prober RJ; de Guzman CP; de Leon R
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S119-28. PubMed ID: 1588602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial denervation of ankle extensors prior to spinalization in cats impacts the expression of locomotion and the phasic modulation of reflexes.
    Frigon A; Rossignol S
    Neuroscience; 2009 Feb; 158(4):1675-90. PubMed ID: 19056469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive changes of the locomotor pattern and cutaneous reflexes during locomotion studied in the same cats before and after spinalization.
    Frigon A; Rossignol S
    J Physiol; 2008 Jun; 586(12):2927-45. PubMed ID: 18420704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in CNS structures after spinal cord lesions implications for BMI.
    Martinez M; Rossignol S
    Prog Brain Res; 2011; 194():191-202. PubMed ID: 21867804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of transmission in muscle group IA afferents during fictive locomotion in the cat.
    Gossard JP
    J Neurophysiol; 1996 Dec; 76(6):4104-12. PubMed ID: 8985904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incomplete spinal cord injury promotes durable functional changes within the spinal locomotor circuitry.
    Martinez M; Delivet-Mongrain H; Leblond H; Rossignol S
    J Neurophysiol; 2012 Jul; 108(1):124-34. PubMed ID: 22490556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhythmic fluctuations of dorsal root potentials and antidromic discharges of primary afferents during fictive locomotion in the cat.
    Dubuc R; Cabelguen JM; Rossignol S
    J Neurophysiol; 1988 Dec; 60(6):2014-36. PubMed ID: 3236059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chapter 16--spinal plasticity in the recovery of locomotion.
    Rossignol S; Frigon A; Barrière G; Martinez M; Barthélemy D; Bouyer L; Bélanger M; Provencher J; Chau C; Brustein E; Barbeau H; Giroux N; Marcoux J; Langlet C; Alluin O
    Prog Brain Res; 2011; 188():229-41. PubMed ID: 21333814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries.
    Barrière G; Leblond H; Provencher J; Rossignol S
    J Neurosci; 2008 Apr; 28(15):3976-87. PubMed ID: 18400897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ladder Treadmill: A Method to Assess Locomotion in Cats with an Intact or Lesioned Spinal Cord.
    Escalona M; Delivet-Mongrain H; Kundu A; Gossard JP; Rossignol S
    J Neurosci; 2017 May; 37(22):5429-5446. PubMed ID: 28473641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The "beneficial" effects of locomotor training after various types of spinal lesions in cats and rats.
    Rossignol S; Martinez M; Escalona M; Kundu A; Delivet-Mongrain H; Alluin O; Gossard JP
    Prog Brain Res; 2015; 218():173-98. PubMed ID: 25890137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric changes in cutaneous reflexes after a partial spinal lesion and retention following spinalization during locomotion in the cat.
    Frigon A; Barrière G; Leblond H; Rossignol S
    J Neurophysiol; 2009 Nov; 102(5):2667-80. PubMed ID: 19726726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Spinal Mechanism Related to Left-Right Symmetry Reduces Cutaneous Reflex Modulation Independently of Speed During Split-Belt Locomotion.
    Hurteau MF; Frigon A
    J Neurosci; 2018 Nov; 38(48):10314-10328. PubMed ID: 30315129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the effect of intrathecal administration of clonidine and yohimbine on the locomotion of intact and spinal cats.
    Giroux N; Reader TA; Rossignol S
    J Neurophysiol; 2001 Jun; 85(6):2516-36. PubMed ID: 11387398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.