BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23843603)

  • 21. Grasses suppress shoot-borne roots to conserve water during drought.
    Sebastian J; Yee MC; Goudinho Viana W; Rellán-Álvarez R; Feldman M; Priest HD; Trontin C; Lee T; Jiang H; Baxter I; Mockler TC; Hochholdinger F; Brutnell TP; Dinneny JR
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8861-6. PubMed ID: 27422554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lateral root development in the maize (Zea mays) lateral rootless1 mutant.
    Husakova E; Hochholdinger F; Soukup A
    Ann Bot; 2013 Jul; 112(2):417-28. PubMed ID: 23456690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation.
    Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F
    J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complexity and specificity of the maize (Zea mays L.) root hair transcriptome.
    Hey S; Baldauf J; Opitz N; Lithio A; Pasha A; Provart N; Nettleton D; Hochholdinger F
    J Exp Bot; 2017 Apr; 68(9):2175-2185. PubMed ID: 28398587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns.
    Yu P; Baldauf JA; Lithio A; Marcon C; Nettleton D; Li C; Hochholdinger F
    Plant Physiol; 2016 Mar; 170(3):1783-98. PubMed ID: 26811190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize.
    von Behrens I; Komatsu M; Zhang Y; Berendzen KW; Niu X; Sakai H; Taramino G; Hochholdinger F
    Plant J; 2011 Apr; 66(2):341-53. PubMed ID: 21219511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ontogeny of the maize shoot apical meristem.
    Takacs EM; Li J; Du C; Ponnala L; Janick-Buckner D; Yu J; Muehlbauer GJ; Schnable PS; Timmermans MC; Sun Q; Nettleton D; Scanlon MJ
    Plant Cell; 2012 Aug; 24(8):3219-34. PubMed ID: 22911570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. mRNA-Sequencing Analysis Reveals Transcriptional Changes in Root of Maize Seedlings Treated with Two Increasing Concentrations of a New Biostimulant.
    Trevisan S; Manoli A; Ravazzolo L; Franceschi C; Quaggiotti S
    J Agric Food Chem; 2017 Nov; 65(46):9956-9969. PubMed ID: 29064699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular and physiological mechanisms associated with root exposure to mercury in barley.
    Lopes MS; Iglesia-Turiño S; Cabrera-Bosquet L; Serret MD; Bort J; Febrero A; Araus JL
    Metallomics; 2013 Sep; 5(9):1305-15. PubMed ID: 23925371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses.
    Rajhi I; Yamauchi T; Takahashi H; Nishiuchi S; Shiono K; Watanabe R; Mliki A; Nagamura Y; Tsutsumi N; Nishizawa NK; Nakazono M
    New Phytol; 2011 Apr; 190(2):351-68. PubMed ID: 21091694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptomic and proteomic analyses of pericycle cells of the maize primary root.
    Dembinsky D; Woll K; Saleem M; Liu Y; Fu Y; Borsuk LA; Lamkemeyer T; Fladerer C; Madlung J; Barbazuk B; Nordheim A; Nettleton D; Schnable PS; Hochholdinger F
    Plant Physiol; 2007 Nov; 145(3):575-88. PubMed ID: 17766395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea mays L.).
    Li J; Guo G; Guo W; Guo G; Tong D; Ni Z; Sun Q; Yao Y
    BMC Plant Biol; 2012 Nov; 12():220. PubMed ID: 23171309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.
    Pal T; Malhotra N; Chanumolu SK; Chauhan RS
    Planta; 2015 Jul; 242(1):239-58. PubMed ID: 25904478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcript profiling during the early development of the maize brace root via Solexa sequencing.
    Li YJ; Fu YR; Huang JG; Wu CA; Zheng CC
    FEBS J; 2011 Jan; 278(1):156-66. PubMed ID: 21122072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots.
    Yu P; Wang C; Baldauf JA; Tai H; Gutjahr C; Hochholdinger F; Li C
    New Phytol; 2018 Feb; 217(3):1240-1253. PubMed ID: 29154441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The IBP genes of maize are expressed in non-meristematic, elongating cells of the seedling and in abortive floral organs.
    Klinge B; Lange T; Werr W
    Mol Gen Genet; 1997 Jul; 255(3):248-57. PubMed ID: 9268015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptomic response is more sensitive to water deficit in shoots than roots of Vitis riparia (Michx.).
    Khadka VS; Vaughn K; Xie J; Swaminathan P; Ma Q; Cramer GR; Fennell AY
    BMC Plant Biol; 2019 Feb; 19(1):72. PubMed ID: 30760212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response.
    Dong Z; Jiang C; Chen X; Zhang T; Ding L; Song W; Luo H; Lai J; Chen H; Liu R; Zhang X; Jin W
    Plant Physiol; 2013 Nov; 163(3):1306-22. PubMed ID: 24089437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach.
    Shoresh M; Harman GE
    Plant Physiol; 2008 Aug; 147(4):2147-63. PubMed ID: 18562766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase.
    Nestler J; Liu S; Wen TJ; Paschold A; Marcon C; Tang HM; Li D; Li L; Meeley RB; Sakai H; Bruce W; Schnable PS; Hochholdinger F
    Plant J; 2014 Sep; 79(5):729-40. PubMed ID: 24902980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.