These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23843744)

  • 1. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes.
    Andrews LD; Fenn TD; Herschlag D
    PLoS Biol; 2013 Jul; 11(7):e1001599. PubMed ID: 23843744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotope-edited FTIR of alkaline phosphatase resolves paradoxical ligand binding properties and suggests a role for ground-state destabilization.
    Andrews LD; Deng H; Herschlag D
    J Am Chem Soc; 2011 Aug; 133(30):11621-31. PubMed ID: 21692505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tungstate as a Transition State Analog for Catalysis by Alkaline Phosphatase.
    Peck A; Sunden F; Andrews LD; Pande VS; Herschlag D
    J Mol Biol; 2016 Jul; 428(13):2758-68. PubMed ID: 27189921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102.
    Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER
    J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pH-dependent activation mechanism of Ser102 in Escherichia coli alkaline phosphatase: a theoretical study.
    Zhang H; Yang L; Ding W; Ma Y
    J Biol Inorg Chem; 2018 Mar; 23(2):277-284. PubMed ID: 29290009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography.
    Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D
    J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.
    Zalatan JG; Catrina I; Mitchell R; Grzyska PK; O'brien PJ; Herschlag D; Hengge AC
    J Am Chem Soc; 2007 Aug; 129(31):9789-98. PubMed ID: 17630738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
    Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D
    J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine coordination in enzymatic phosphoryl transfer: evaluation of the effect of Arg166 mutations in Escherichia coli alkaline phosphatase.
    O'Brien PJ; Lassila JK; Fenn TD; Zalatan JG; Herschlag D
    Biochemistry; 2008 Jul; 47(29):7663-72. PubMed ID: 18627128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground state destabilization from a positioned general base in the ketosteroid isomerase active site.
    Ruben EA; Schwans JP; Sonnett M; Natarajan A; Gonzalez A; Tsai Y; Herschlag D
    Biochemistry; 2013 Feb; 52(6):1074-81. PubMed ID: 23311398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases.
    Andrews LD; Zalatan JG; Herschlag D
    Biochemistry; 2014 Nov; 53(43):6811-9. PubMed ID: 25299936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
    Stec B; Holtz KM; Kantrowitz ER
    J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation of Arg-166 of alkaline phosphatase alters the thio effect but not the transition state for phosphoryl transfer. Implications for the interpretation of thio effects in reactions of phosphatases.
    Holtz KM; Catrina IE; Hengge AC; Kantrowitz ER
    Biochemistry; 2000 Aug; 39(31):9451-8. PubMed ID: 10924140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate monoester hydrolysis by trinuclear alkaline phosphatase; DFT study of transition States and reaction mechanism.
    Chen SL; Liao RZ
    Chemphyschem; 2014 Aug; 15(11):2321-30. PubMed ID: 24683174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of different types of transition states in a single enzyme active site: QM/MM analysis of enzymes in the alkaline phosphatase superfamily.
    Hou G; Cui Q
    J Am Chem Soc; 2013 Jul; 135(28):10457-69. PubMed ID: 23786365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily.
    Hou G; Cui Q
    J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkaline phosphatase revisited: hydrolysis of alkyl phosphates.
    O'Brien PJ; Herschlag D
    Biochemistry; 2002 Mar; 41(9):3207-25. PubMed ID: 11863460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do electrostatic interactions with positively charged active site groups tighten the transition state for enzymatic phosphoryl transfer?
    Nikolic-Hughes I; Rees DC; Herschlag D
    J Am Chem Soc; 2004 Sep; 126(38):11814-9. PubMed ID: 15382915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases.
    Bihani SC; Das A; Nilgiriwala KS; Prashar V; Pirocchi M; Apte SK; Ferrer JL; Hosur MV
    PLoS One; 2011; 6(7):e22767. PubMed ID: 21829507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.