BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23843744)

  • 21. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphate binding energy and catalysis by small and large molecules.
    Morrow JR; Amyes TL; Richard JP
    Acc Chem Res; 2008 Apr; 41(4):539-48. PubMed ID: 18293941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution.
    Zalatan JG; Fenn TD; Brunger AT; Herschlag D
    Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 31P nuclear magnetic resonance of phosphoenzyme intermediates of alkaline phosphatase.
    Gettins P; Coleman JE
    J Biol Chem; 1983 Jan; 258(1):408-16. PubMed ID: 6336753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The nature of the transition state for enzyme-catalyzed phosphoryl transfer. Hydrolysis of O-aryl phosphorothioates by alkaline phosphatase.
    Hollfelder F; Herschlag D
    Biochemistry; 1995 Sep; 34(38):12255-64. PubMed ID: 7547968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes.
    Davies DR; Hol WG
    FEBS Lett; 2004 Nov; 577(3):315-21. PubMed ID: 15556602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily.
    Sunden F; AlSadhan I; Lyubimov AY; Ressl S; Wiersma-Koch H; Borland J; Brown CL; Johnson TA; Singh Z; Herschlag D
    J Am Chem Soc; 2016 Nov; 138(43):14273-14287. PubMed ID: 27670607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization.
    Narlikar GJ; Gopalakrishnan V; McConnell TS; Usman N; Herschlag D
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3668-72. PubMed ID: 7731962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The tetrahymena ribozyme cleaves a 5'-methylene phosphonate monoester approximately 10(2)-fold faster than a normal phosphate diester: implications for enzyme catalysis of phosphoryl transfer reactions.
    Liao X; Anjaneyulu PS; Curley JF; Hsu M; Boehringer M; Caruthers MH; Piccirilli JA
    Biochemistry; 2001 Sep; 40(37):10911-26. PubMed ID: 11551186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pH-Dependent Binding of Chloride to a Marine Alkaline Phosphatase Affects the Catalysis, Active Site Stability, and Dimer Equilibrium.
    Hjörleifsson JG; Ásgeirsson B
    Biochemistry; 2017 Sep; 56(38):5075-5089. PubMed ID: 28829580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of enzyme-ribofuranosyl contacts in the ground state and transition state for orotidine 5'-phosphate decarboxylase: a role for substrate destabilization?
    Miller BG; Butterfoss GL; Short SA; Wolfenden R
    Biochemistry; 2001 May; 40(21):6227-32. PubMed ID: 11371183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alkaline phosphatase mono- and diesterase reactions: comparative transition state analysis.
    Zalatan JG; Herschlag D
    J Am Chem Soc; 2006 Feb; 128(4):1293-303. PubMed ID: 16433548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in the Nature of the Phosphoryl Transfer Transition State in Protein Phosphatase 1 and Alkaline Phosphatase: Insights from QM Cluster Models.
    Lai R; Cui Q
    J Phys Chem B; 2020 Oct; 124(42):9371-9384. PubMed ID: 33030898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis.
    Kim EE; Wyckoff HW
    J Mol Biol; 1991 Mar; 218(2):449-64. PubMed ID: 2010919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions.
    Nikolic-Hughes I; O'brien PJ; Herschlag D
    J Am Chem Soc; 2005 Jul; 127(26):9314-5. PubMed ID: 15984827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trapping the tetrahedral intermediate in the alkaline phosphatase reaction by substitution of the active site serine with threonine.
    Wang J; Kantrowitz ER
    Protein Sci; 2006 Oct; 15(10):2395-401. PubMed ID: 17008720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remarkable rate enhancement of orotidine 5'-monophosphate decarboxylase is due to transition-state stabilization rather than to ground-state destabilization.
    Warshel A; Strajbl M; Villà J; Florián J
    Biochemistry; 2000 Dec; 39(48):14728-38. PubMed ID: 11101287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3-D structure of a mutant (Asp101-->Ser) of E.coli alkaline phosphatase with higher catalytic activity.
    Chen L; Neidhart D; Kohlbrenner WM; Mandecki W; Bell S; Sowadski J; Abad-Zapatero C
    Protein Eng; 1992 Oct; 5(7):605-10. PubMed ID: 1480614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Key difference between transition state stabilization and ground state destabilization: increasing atomic charge densities before or during enzyme-substrate binding.
    Chen D; Li Y; Li X; Hong X; Fan X; Savidge T
    Chem Sci; 2022 Jul; 13(27):8193-8202. PubMed ID: 35919436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites.
    Ma L; Kantrowitz ER
    Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.