These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23843934)

  • 1. 4D segmentation of brain MR images with constrained cortical thickness variation.
    Wang L; Shi F; Li G; Shen D
    PLoS One; 2013; 8(7):e64207. PubMed ID: 23843934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of neonatal images using convex optimization and coupled level sets.
    Wang L; Shi F; Lin W; Gilmore JH; Shen D
    Neuroimage; 2011 Oct; 58(3):805-17. PubMed ID: 21763443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel cortical thickness estimation method based on volumetric Laplace-Beltrami operator and heat kernel.
    Wang G; Zhang X; Su Q; Shi J; Caselli RJ; Wang Y;
    Med Image Anal; 2015 May; 22(1):1-20. PubMed ID: 25700360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation.
    Roy S; Carass A; Pacheco J; Bilgel M; Resnick SM; Prince JL; Pham DL
    Neuroimage Clin; 2016; 11():264-275. PubMed ID: 26958465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent 4D cortical thickness measurement for longitudinal neuroimaging study.
    Li Y; Wang Y; Xue Z; Shi F; Lin W; Shen D;
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):133-42. PubMed ID: 20879308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features.
    Li Y; Wang Y; Wu G; Shi F; Zhou L; Lin W; Shen D;
    Neurobiol Aging; 2012 Feb; 33(2):427.e15-30. PubMed ID: 21272960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data.
    Cho Y; Seong JK; Jeong Y; Shin SY;
    Neuroimage; 2012 Feb; 59(3):2217-30. PubMed ID: 22008371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: a multi-sample MRI study.
    Westlye LT; Walhovd KB; Dale AM; Espeseth T; Reinvang I; Raz N; Agartz I; Greve DN; Fischl B; Fjell AM
    Neuroimage; 2009 Oct; 47(4):1545-57. PubMed ID: 19501655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust generative asymmetric GMM for brain MR image segmentation.
    Ji Z; Xia Y; Zheng Y
    Comput Methods Programs Biomed; 2017 Nov; 151():123-138. PubMed ID: 28946994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
    Chen M; Yan Q; Qin M
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):200-211. PubMed ID: 29072503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning.
    Guo Y; Gao Y; Shao Y; Price T; Oto A; Shen D
    Med Phys; 2014 Jul; 41(7):072303. PubMed ID: 24989402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of neonatal brain MR images using patch-driven level sets.
    Wang L; Shi F; Li G; Gao Y; Lin W; Gilmore JH; Shen D
    Neuroimage; 2014 Jan; 84():141-58. PubMed ID: 23968736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.
    Chen Y; Zhao B; Zhang J; Zheng Y
    Magn Reson Imaging; 2014 Sep; 32(7):941-55. PubMed ID: 24832358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability-based robust multi-atlas label fusion for brain MRI segmentation.
    Sun L; Zu C; Shao W; Guang J; Zhang D; Liu M
    Artif Intell Med; 2019 May; 96():12-24. PubMed ID: 31164205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants.
    Li G; Wang L; Shi F; Lin W; Shen D
    Med Image Anal; 2014 Dec; 18(8):1274-89. PubMed ID: 25066749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consistent reconstruction of cortical surfaces from longitudinal brain MR images.
    Li G; Nie J; Wu G; Wang Y; Shen D;
    Neuroimage; 2012 Feb; 59(4):3805-20. PubMed ID: 22119005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust whole-brain segmentation: application to traumatic brain injury.
    Ledig C; Heckemann RA; Hammers A; Lopez JC; Newcombe VF; Makropoulos A; Lötjönen J; Menon DK; Rueckert D
    Med Image Anal; 2015 Apr; 21(1):40-58. PubMed ID: 25596765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic 3D graph cuts for brain cortex segmentation in patients with focal cortical dysplasia.
    Despotović I; Segers I; Platisa L; Vansteenkiste E; Pizurica A; Deblaere K; Philips W
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7981-4. PubMed ID: 22256192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast, model-independent method for cerebral cortical thickness estimation using MRI.
    Scott ML; Bromiley PA; Thacker NA; Hutchinson CE; Jackson A
    Med Image Anal; 2009 Apr; 13(2):269-85. PubMed ID: 19068276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing 4D infant cortical surface atlases based on dynamic developmental trajectories of the cortex.
    Li G; Wang L; Shi F; Lin W; Shen D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 3):89-96. PubMed ID: 25320786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.