These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23843992)

  • 1. Age-related wayfinding differences in real large-scale environments: detrimental motor control effects during spatial learning are mediated by executive decline?
    Taillade M; Sauzéon H; Arvind Pala P; Déjos M; Larrue F; Gross C; N'Kaoua B
    PLoS One; 2013; 8(7):e67193. PubMed ID: 23843992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Executive and memory correlates of age-related differences in wayfinding performances using a virtual reality application.
    Taillade M; Sauzéon H; Dejos M; Pala PA; Larrue F; Wallet G; Gross C; N'Kaoua B
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2013; 20(3):298-319. PubMed ID: 22901081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age effects on wayfinding and route learning skills.
    Head D; Isom M
    Behav Brain Res; 2010 May; 209(1):49-58. PubMed ID: 20085784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual reality in neurologic rehabilitation of spatial disorientation.
    Kober SE; Wood G; Hofer D; Kreuzig W; Kiefer M; Neuper C
    J Neuroeng Rehabil; 2013 Feb; 10():17. PubMed ID: 23394289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wayfinding and Glaucoma: A Virtual Reality Experiment.
    Daga FB; Macagno E; Stevenson C; Elhosseiny A; Diniz-Filho A; Boer ER; Schulze J; Medeiros FA
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3343-3349. PubMed ID: 28687845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual/real transfer of spatial knowledge: benefit from visual fidelity provided in a virtual environment and impact of active navigation.
    Wallet G; Sauzéon H; Pala PA; Larrue F; Zheng X; N'Kaoua B
    Cyberpsychol Behav Soc Netw; 2011; 14(7-8):417-23. PubMed ID: 21288136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual reality as allocentric/egocentric technology for the assessment of cognitive decline in the elderly.
    Morganti F; Riva G
    Stud Health Technol Inform; 2014; 196():278-84. PubMed ID: 24732522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual/Real transfer of spatial learning: impact of activity according to the retention delay.
    Wallet G; Sauzéon H; Rodrigues J; Larrue F; N'kaoua B
    Stud Health Technol Inform; 2010; 154():145-9. PubMed ID: 20543287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Considering spatial ability in virtual route learning in early aging.
    Gyselinck V; Meneghetti C; Bormetti M; Orriols E; Piolino P; De Beni R
    Cogn Process; 2013 Aug; 14(3):309-16. PubMed ID: 23536003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How age-related strategy switching deficits affect wayfinding in complex environments.
    Harris MA; Wolbers T
    Neurobiol Aging; 2014 May; 35(5):1095-102. PubMed ID: 24239438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Route repetition and route reversal: Effects of age and encoding method.
    Allison S; Head D
    Psychol Aging; 2017 May; 32(3):220-231. PubMed ID: 28504535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A virtual reality based tool for the assessment of "survey to route" spatial organization ability in elderly population: preliminary data.
    Morganti F; Marrakchi S; Urban PP; Iannoccari GA; Riva G
    Cogn Process; 2009 Sep; 10 Suppl 2():S257-9. PubMed ID: 19693582
    [No Abstract]   [Full Text] [Related]  

  • 13. Navigation assistance: a trade-off between wayfinding support and configural learning support.
    Münzer S; Zimmer HD; Baus J
    J Exp Psychol Appl; 2012 Mar; 18(1):18-37. PubMed ID: 22141461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Giessen virtual environment laboratory: human wayfinding and landmark salience.
    Röser F; Hamburger K; Knauff M
    Cogn Process; 2011 May; 12(2):209-14. PubMed ID: 21279666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the landmark-route-survey framework to evaluate spatial knowledge obtained from synthetic vision systems.
    Lapeyre B; Hourlier S; Servantie X; N'Kaoua B; Sauzéon H
    Hum Factors; 2011 Dec; 53(6):647-61. PubMed ID: 22235527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Search Strategies Used by Older Adults in a Virtual Reality Place Learning Task.
    Davis RL; Weisbeck C
    Gerontologist; 2015 Jun; 55 Suppl 1():S118-27. PubMed ID: 26055772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Route memory in an unfamiliar homogeneous environment: a comparison of two strategies.
    Sameer A; Bhushan B
    Cogn Process; 2015 Sep; 16 Suppl 1():149-52. PubMed ID: 26224259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage.
    Goodrich-Hunsaker NJ; Livingstone SA; Skelton RW; Hopkins RO
    Hippocampus; 2010 Apr; 20(4):481-91. PubMed ID: 19554566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial knowledge acquisition in younger and elderly adults: a study in a virtual environment.
    Jansen P; Schmelter A; Heil M
    Exp Psychol; 2010; 57(1):54-60. PubMed ID: 20178963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MAGELLAN: a cognitive map-based model of human wayfinding.
    Manning JR; Lew TF; Li N; Sekuler R; Kahana MJ
    J Exp Psychol Gen; 2014 Jun; 143(3):1314-1330. PubMed ID: 24490847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.