These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 23844120)
1. Structure-guided modification of Rhizomucor miehei lipase for production of structured lipids. Zhang JH; Jiang YY; Lin Y; Sun YF; Zheng SP; Han SY PLoS One; 2013; 8(7):e67892. PubMed ID: 23844120 [TBL] [Abstract][Full Text] [Related]
2. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids. Zou XG; Hu JN; Zhao ML; Zhu XM; Li HY; Liu XR; Liu R; Deng ZY J Agric Food Chem; 2014 Oct; 62(43):10594-603. PubMed ID: 25298236 [TBL] [Abstract][Full Text] [Related]
3. Combination of site-directed mutagenesis and yeast surface display enhances Rhizomucor miehei lipase esterification activity in organic solvent. Han SY; Zhang JH; Han ZL; Zheng SP; Lin Y Biotechnol Lett; 2011 Dec; 33(12):2431-8. PubMed ID: 21809089 [TBL] [Abstract][Full Text] [Related]
4. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes. Sahin N; Akoh CC; Karaali A J Agric Food Chem; 2005 Jul; 53(14):5779-83. PubMed ID: 15998148 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of Rhizomucor miehei lipase on magnetic multiwalled carbon nanotubes towards the synthesis of structured lipids rich in sn-2 palmitic acid and sn-1,3 oleic acid (OPO) for infant formula use. Ghide MK; Li K; Wang J; Abdulmalek SA; Yan Y Food Chem; 2022 Oct; 390():133171. PubMed ID: 35551020 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds. Li G; Fang X; Su F; Chen Y; Xu L; Yan Y Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200 [No Abstract] [Full Text] [Related]
7. High-throughput screening of B factor saturation mutated Rhizomucor miehei lipase thermostability based on synthetic reaction. Zhang JH; Lin Y; Sun YF; Ye YR; Zheng SP; Han SY Enzyme Microb Technol; 2012 May; 50(6-7):325-30. PubMed ID: 22500900 [TBL] [Abstract][Full Text] [Related]
8. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface. Han ZL; Han SY; Zheng SP; Lin Y Appl Microbiol Biotechnol; 2009 Nov; 85(1):117-26. PubMed ID: 19533118 [TBL] [Abstract][Full Text] [Related]
9. Application of Rhizomucor miehei lipase-displaying Pichia pastoris whole cell for biodiesel production using agro-industrial residuals as substrate. Sena RO; Carneiro C; Moura MVH; Brêda GC; Pinto MCC; Fé LXSGM; Fernandez-Lafuente R; Manoel EA; Almeida RV; Freire DMG; Cipolatti EP Int J Biol Macromol; 2021 Oct; 189():734-743. PubMed ID: 34455007 [TBL] [Abstract][Full Text] [Related]
10. The Enzymatic Preparation of Human Milk Fat Substitute Intermediate Rich in Palmitic Acid at sn-2 Position and Low-Unsaturated Fatty Acids at sn-1(3) Positions from Palm Oil Substrate. Shimane K; Ogawa S; Yamamoto Y; Hara S J Oleo Sci; 2021 Feb; 70(2):165-173. PubMed ID: 33455999 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic Synthesis and Characterization of MLM-type Structured Lipid Using Grapeseed Oil and Capric Acid. Liu X; Akoh CC J Oleo Sci; 2024; 73(7):977-990. PubMed ID: 38945926 [TBL] [Abstract][Full Text] [Related]
12. Modification and simulation of Rhizomucor miehei lipase: the influence of surficial electrostatic interaction on enantioselectivity. Xu G; Meng X; Xu LJ; Guo L; Wu JP; Yang LR Biotechnol Lett; 2015 Apr; 37(4):871-80. PubMed ID: 25650338 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: optimization by response surface methodology. Zhou D; Xu X; Mu H; Høy CE; Adler-Nissen J J Agric Food Chem; 2001 Dec; 49(12):5771-7. PubMed ID: 11743762 [TBL] [Abstract][Full Text] [Related]
14. Steryl and stanyl esters of fatty acids by solvent-free esterification and transesterification in vacuo using lipases from Rhizomucor miehei, Candida antarctica, and Carica papaya. Weber N; Weitkamp P; Mukherjee KD J Agric Food Chem; 2001 Nov; 49(11):5210-6. PubMed ID: 11714305 [TBL] [Abstract][Full Text] [Related]
15. Lipase-catalyzed Synthesis of Oleoyl-lysophosphatidylcholine by Direct Esterification in Solvent-free Medium without Water Removal. Mnasri T; Ergan F; Herault J; Pencreac'h G J Oleo Sci; 2017 Sep; 66(9):1009-1016. PubMed ID: 28794312 [TBL] [Abstract][Full Text] [Related]
16. Candida rugosa lipase LIP1-catalyzed transesterification to produce human milk fat substitute. Srivastava A; Akoh CC; Chang SW; Lee GC; Shaw JF J Agric Food Chem; 2006 Jul; 54(14):5175-81. PubMed ID: 16819932 [TBL] [Abstract][Full Text] [Related]
17. Fatty acid selectivity of lipases during acidolysis reaction between oleic acid and monoacid triacylglycerols. Karabulut I; Durmaz G; Hayaloglu AA J Agric Food Chem; 2009 Nov; 57(21):10466-70. PubMed ID: 19835376 [TBL] [Abstract][Full Text] [Related]
18. Lipase-catalysed synthesis of palm oil-omega-3 structured lipids. Xia Q; Akanbi TO; Li R; Wang B; Yang W; Barrow CJ Food Funct; 2019 Jun; 10(6):3142-3149. PubMed ID: 31157352 [TBL] [Abstract][Full Text] [Related]
19. Efficient improvement of surface displayed lipase from Rhizomucor miehei in PichiaPink™ protease-deficient system. Li Z; Miao Y; Yang J; Zhao F; Lin Y; Han S Protein Expr Purif; 2021 Apr; 180():105804. PubMed ID: 33276128 [TBL] [Abstract][Full Text] [Related]