These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23844241)

  • 41. Optimising the viability during storage of freeze-dried cell preparations of Campylobacter jejuni.
    Portner DC; Leuschner RG; Murray BS
    Cryobiology; 2007 Jun; 54(3):265-70. PubMed ID: 17482158
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria.
    Strasser S; Neureiter M; Geppl M; Braun R; Danner H
    J Appl Microbiol; 2009 Jul; 107(1):167-77. PubMed ID: 19302330
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The influence of stabilizers and rates of freezing on preserving of structurally different animal viruses during lyophilization and subsequent storage.
    Malenovská H
    J Appl Microbiol; 2014 Dec; 117(6):1810-9. PubMed ID: 25250638
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental phage therapy against Staphylococcus aureus in mice.
    Capparelli R; Parlato M; Borriello G; Salvatore P; Iannelli D
    Antimicrob Agents Chemother; 2007 Aug; 51(8):2765-73. PubMed ID: 17517843
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin.
    Rahman M; Kim S; Kim SM; Seol SY; Kim J
    Biofouling; 2011 Nov; 27(10):1087-93. PubMed ID: 22050201
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved formulation and lyophilization cycle for rBCG vaccine.
    Jin TH; Nguyen L; Qu T; Tsao E
    Vaccine; 2011 Jun; 29(29-30):4848-52. PubMed ID: 21549782
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genes Influencing Phage Host Range in Staphylococcus aureus on a Species-Wide Scale.
    Moller AG; Winston K; Ji S; Wang J; Hargita Davis MN; Solís-Lemus CR; Read TD
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33441407
    [No Abstract]   [Full Text] [Related]  

  • 48. Microencapsulation of a Staphylococcus phage for concentration and long-term storage.
    El Haddad L; Lemay MJ; Khalil GE; Moineau S; Champagne CP
    Food Microbiol; 2018 Dec; 76():304-309. PubMed ID: 30166155
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complete genome of Staphylococcus aureus phage SA11.
    Kim MS; Myung H
    J Virol; 2012 Sep; 86(18):10232. PubMed ID: 22923794
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host ranges and potent lytic capabilities.
    Synnott AJ; Kuang Y; Kurimoto M; Yamamichi K; Iwano H; Tanji Y
    Appl Environ Microbiol; 2009 Jul; 75(13):4483-90. PubMed ID: 19411410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying.
    Leslie SB; Israeli E; Lighthart B; Crowe JH; Crowe LM
    Appl Environ Microbiol; 1995 Oct; 61(10):3592-7. PubMed ID: 7486995
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of critical process and formulation parameters affecting in-process stability of lactate dehydrogenase during the secondary drying stage of lyophilization: a mini freeze dryer study.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Sep; 96(9):2242-50. PubMed ID: 17621675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of protein stabilization by trehalose during freeze-drying analyzed by in situ micro-raman spectroscopy.
    Hedoux A; Paccou L; Achir S; Guinet Y
    J Pharm Sci; 2013 Aug; 102(8):2484-94. PubMed ID: 23754549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. VIABILITY AND METABOLISM OF STAPHYLOCOCCUS AUREUS AFTER FREEZING, LYOPHILIZATION, AND IRRADIATION.
    AHN TH; NISHIHARA H; CARPENTER CM; TAPLIN GV
    J Bacteriol; 1964 Sep; 88(3):545-52. PubMed ID: 14208486
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle.
    Gill JJ; Pacan JC; Carson ME; Leslie KE; Griffiths MW; Sabour PM
    Antimicrob Agents Chemother; 2006 Sep; 50(9):2912-8. PubMed ID: 16940081
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioprospecting
    Oduor JMO; Kadija E; Nyachieo A; Mureithi MW; Skurnik M
    Viruses; 2020 Jan; 12(2):. PubMed ID: 31979276
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lytic activities, protein profiles and morphologic characteristics of new bacteriophages isolated from canine and human Staphylococcus aureus strains.
    Adesiyun AA; Viebahn A; Sahl HG; Lenz W; Schaal KP
    Zentralbl Veterinarmed B; 1992 Feb; 39(1):39-47. PubMed ID: 1533744
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.
    Lee YD; Park JH
    J Microbiol Biotechnol; 2016 Feb; 26(2):263-9. PubMed ID: 26562692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The use of polyvinylpyrrolidone as a stabilizer in the lyophilization of Brucella].
    Zakhlebnaia OD; Laukner IV
    Lab Delo; 1991; (2):62-3. PubMed ID: 1709995
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.
    Korang-Yeboah M; Srinivasan C; Siddiqui A; Awotwe-Otoo D; Cruz CN; Muhammad A
    AAPS PharmSciTech; 2018 Jan; 19(1):448-459. PubMed ID: 28785859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.