BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 23844272)

  • 21. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration.
    Kaushal V; Koeberle PD; Wang Y; Schlichter LC
    J Neurosci; 2007 Jan; 27(1):234-44. PubMed ID: 17202491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathophysiological Role of Mitochondrial Potassium Channels and their Modulation by Drugs.
    Citi V; Calderone V; Martelli A; Breschi MC; Testai L
    Curr Med Chem; 2018; 25(23):2661-2674. PubMed ID: 29022502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations.
    Tronel C; Largeau B; Santiago Ribeiro MJ; Guilloteau D; Dupont AC; Arlicot N
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28398245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner.
    Takeuchi H; Jin S; Wang J; Zhang G; Kawanokuchi J; Kuno R; Sonobe Y; Mizuno T; Suzumura A
    J Biol Chem; 2006 Jul; 281(30):21362-21368. PubMed ID: 16720574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ.
    Chausse B; Lewen A; Poschet G; Kann O
    Brain Behav Immun; 2020 Aug; 88():802-814. PubMed ID: 32446944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glia in Neurodegeneration: The Housekeeper, the Defender and the Perpetrator.
    Sheeler C; Rosa JG; Ferro A; McAdams B; Borgenheimer E; Cvetanovic M
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33276471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purinergic-Glycinergic Interaction in Neurodegenerative and Neuroinflammatory Disorders of the Retina.
    Harsing LG; Szénási G; Zelles T; Köles L
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34201404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models.
    Sugama S; Takenouchi T; Cho BP; Joh TH; Hashimoto M; Kitani H
    Inflamm Allergy Drug Targets; 2009 Sep; 8(4):277-84. PubMed ID: 19754411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization and comparative analysis of a new mouse microglial cell model for studying neuroinflammatory mechanisms during neurotoxic insults.
    Sarkar S; Malovic E; Sarda D; Lawana V; Rokad D; Jin H; Anantharam V; Kanthasamy A; Kanthasamy AG
    Neurotoxicology; 2018 Jul; 67():129-140. PubMed ID: 29775624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inflammation and mitochondrial dysfunction: A vicious circle in neurodegenerative disorders?
    van Horssen J; van Schaik P; Witte M
    Neurosci Lett; 2019 Sep; 710():132931. PubMed ID: 28668382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lysosomal Functions in Glia Associated with Neurodegeneration.
    Kreher C; Favret J; Maulik M; Shin D
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33803137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prion protein expression differences in microglia and astroglia influence scrapie-induced neurodegeneration in the retina and brain of transgenic mice.
    Kercher L; Favara C; Striebel JF; LaCasse R; Chesebro B
    J Virol; 2007 Oct; 81(19):10340-51. PubMed ID: 17652390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism.
    Block ML; Hong JS
    Prog Neurobiol; 2005 Jun; 76(2):77-98. PubMed ID: 16081203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Lipid Bodies in the Microglial Aging Process and Related Diseases.
    Hu X; Xu B; Ge W
    Neurochem Res; 2017 Nov; 42(11):3140-3148. PubMed ID: 28699057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of glia phenotype modulators based on select glial function regulatory signaling pathways.
    Lee SH; Suk K
    Expert Opin Drug Discov; 2018 Jul; 13(7):627-641. PubMed ID: 29676181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurotransmitters and microglial-mediated neuroinflammation.
    Lee M
    Curr Protein Pept Sci; 2013 Feb; 14(1):21-32. PubMed ID: 23441898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Responses of rat and mouse primary microglia to pro- and anti-inflammatory stimuli: molecular profiles, K
    Lam D; Lively S; Schlichter LC
    J Neuroinflammation; 2017 Aug; 14(1):166. PubMed ID: 28830445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA-seq and network analysis reveal unique glial gene expression signatures during prion infection.
    Carroll JA; Race B; Williams K; Striebel J; Chesebro B
    Mol Brain; 2020 May; 13(1):71. PubMed ID: 32381108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation.
    Zhou F; Yao HH; Wu JY; Ding JH; Sun T; Hu G
    J Cell Mol Med; 2008; 12(5A):1559-70. PubMed ID: 19012619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.