BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23844345)

  • 1. In situ monitoring magnetism and resistance of nanophase platinum upon electrochemical oxidation.
    Steyskal EM; Topolovec S; Landgraf S; Krenn H; Würschum R
    Beilstein J Nanotechnol; 2013; 4():394-9. PubMed ID: 23844345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SQUID magnetometry combined with in situ cyclic voltammetry: A case study of tunable magnetism of [Formula: see text]-Fe
    Topolovec S; Jerabek P; Szabó DV; Krenn H; Würschum R
    J Magn Magn Mater; 2013 Mar; 329(2-2):43-48. PubMed ID: 23471175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically tunable resistance of a metal.
    Sagmeister M; Brossmann U; Landgraf S; Würschum R
    Phys Rev Lett; 2006 Apr; 96(15):156601. PubMed ID: 16712180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemically Tunable Resistance of Nanoporous Platinum Produced by Dealloying.
    Steyskal EM; Qi Z; Pölt P; Albu M; Weissmüller J; Würschum R
    Langmuir; 2016 Aug; 32(31):7757-64. PubMed ID: 27406856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy.
    Norlin A; Pan J; Leygraf C
    Biomol Eng; 2002 Aug; 19(2-6):67-71. PubMed ID: 12202164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angstrom-resolved real-time dissection of electrochemically active noble metal interfaces.
    Shrestha BR; Baimpos T; Raman S; Valtiner M
    ACS Nano; 2014 Jun; 8(6):5979-87. PubMed ID: 24826945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical potentials of electric double layers at metal-electrolyte interfaces: dependence on electrolyte concentration and electrode materials, and application to field-effect transistors.
    Nanjo C; Yokogawa D; Matsushita MM; Awaga K
    Phys Chem Chem Phys; 2020 Jun; 22(22):12395-12402. PubMed ID: 32347251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of the Pt(111)/electrolyte electrochemical interface studied with a hybrid DFT-solvation approach.
    Tesch R; Kowalski PM; Eikerling MH
    J Phys Condens Matter; 2021 Aug; 33(44):. PubMed ID: 34348250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal-Electrolyte Interface via a Grain-by-Grain Approach.
    Wang Y; Gordon E; Ren H
    Anal Chem; 2020 Feb; 92(3):2859-2865. PubMed ID: 31941268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Well-dispersed Pt cubes on porous Cu foam: high-performance catalysts for the electrochemical oxidation of glucose in neutral media.
    Niu X; Lan M; Zhao H; Chen C
    Chemistry; 2013 Jul; 19(29):9534-41. PubMed ID: 23744705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling magnetism on metal surfaces with non-magnetic means: electric fields and surface charging.
    Brovko OO; Ruiz-Díaz P; Dasa TR; Stepanyuk VS
    J Phys Condens Matter; 2014 Mar; 26(9):093001. PubMed ID: 24523356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of diffuse double layer effect on the vibrational properties and oxidation of chemisorbed carbon monoxide on a Pt(111) electrode.
    Figueiredo MC; Hiltrop D; Sundararaman R; Schwarz KA; Koper MTM
    Electrochim Acta; 2018; 281():. PubMed ID: 35530257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical stimulation with Pt electrodes: Trace analysis for dissolved platinum and other dissolved electrochemical products.
    Brummer SB; McHardy J; Turner MJ
    Brain Behav Evol; 1977 Feb; 14(1-2):10-22. PubMed ID: 13907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical characteristics of ideal polarizable interfaces with limited number of charge carriers.
    Přibyl M; Slouka Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052404. PubMed ID: 26651709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-Level Observation of Electrochemical Platinum Dissolution and Redeposition.
    Nagashima S; Ikai T; Sasaki Y; Kawasaki T; Hatanaka T; Kato H; Kishita K
    Nano Lett; 2019 Oct; 19(10):7000-7005. PubMed ID: 31524402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Mass Spectrometric Monitoring of the Dynamic Electrochemical Process at the Electrode-Electrolyte Interface: a SIMS Approach.
    Wang Z; Zhang Y; Liu B; Wu K; Thevuthasan S; Baer DR; Zhu Z; Yu XY; Wang F
    Anal Chem; 2017 Jan; 89(1):960-965. PubMed ID: 27936704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FTIR study of the ethanol electrooxidation on Pt(100) modified by osmium nanodeposits.
    Pacheco Santos V; Del Colle V; Batista de Lima R; Tremiliosi-Filho G
    Langmuir; 2004 Dec; 20(25):11064-72. PubMed ID: 15568859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF.
    Lai W; Haile SM
    Phys Chem Chem Phys; 2008 Feb; 10(6):865-83. PubMed ID: 18231690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.