These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23844412)

  • 1. Jatropha curcas L. root structure and growth in diverse soils.
    Valdés-Rodríguez OA; Sánchez-Sánchez O; Pérez-Vázquez A; Caplan JS; Danjon F
    ScientificWorldJournal; 2013; 2013():827295. PubMed ID: 23844412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecophysiological responses of Jatropha curcas L. seedlings to simulated acid rain under different soil types.
    Shu X; Zhang K; Zhang Q; Wang W
    Ecotoxicol Environ Saf; 2019 Dec; 185():109705. PubMed ID: 31561080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-element uptake and growth responses of Rice (Oryza sativa L.) to TiO
    Arshad M; Nisar S; Gul I; Nawaz U; Irum S; Ahmad S; Sadat H; Mian IA; Ali S; Rizwan M; Alsahli AA; Alyemeni MN
    Ecotoxicol Environ Saf; 2021 Jun; 215():112149. PubMed ID: 33773153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of phosphate-solubilizing bacteria, native microorganisms, and rock dust on Jatropha curcas L. growth.
    Santana EB; Marques EL; Dias JC
    Genet Mol Res; 2016 Oct; 15(4):. PubMed ID: 27808370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Soil Type, Temperature, and Moisture on Development of Fusarium Root Rot of Soybean by
    Yan H; Nelson B
    Plant Dis; 2022 Nov; 106(11):2974-2983. PubMed ID: 35412331
    [No Abstract]   [Full Text] [Related]  

  • 6. Impact of the energy crop Jatropha curcas L. on the composition of rhizobial populations nodulating cowpea (Vigna unguiculata L.) and acacia (Acacia seyal L.).
    Dieng A; Duponnois R; Floury A; Laguerre G; Ndoye I; Baudoin E
    Syst Appl Microbiol; 2015 Mar; 38(2):128-34. PubMed ID: 25466917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jatropha curcas, a Novel Crop for Developing the Marginal Lands.
    Abobatta WF
    Methods Mol Biol; 2021; 2290():79-100. PubMed ID: 34009584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of bauxite wastewater potentiality by Jatropa curcas.
    Kristanti RA; Mardarveran P; Almaary KS; Elshikh MS; AbdelGawwad MR; Tang DKH
    Bioprocess Biosyst Eng; 2023 Mar; 46(3):373-379. PubMed ID: 35773493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity and Antimicrobial Activities of
    Jimoh MO; Afolayan AJ; Lewu FB
    J Evid Based Integr Med; 2020; 25():2515690X20971578. PubMed ID: 33241708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.
    Paudel I; Cohen S; Shaviv A; Bar-Tal A; Bernstein N; Heuer B; Ephrath J
    Tree Physiol; 2016 Jun; 36(6):770-85. PubMed ID: 27022106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of Different Residue Part Inputs of Corn Straws on CO2 Efflux and Microbial Biomass in Clay Loam and Sandy Loam Black Soils].
    Liu SY; Liang AZ; Yang XM; Zhang XP; Jia SX; Chen XW; Zhang SX; Sun BJ; Chen SL
    Huan Jing Ke Xue; 2015 Jul; 36(7):2686-94. PubMed ID: 26489342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant root tortuosity: an indicator of root path formation in soil with different composition and density.
    Popova L; van Dusschoten D; Nagel KA; Fiorani F; Mazzolai B
    Ann Bot; 2016 Oct; 118(4):685-698. PubMed ID: 27192709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal variations in soil aggregation following olive pomace and vineyard pruning waste compost applications on clay, loam, and sandy loam soils.
    Işler N; İlay R; Kavdir Y
    Environ Monit Assess; 2022 May; 194(6):418. PubMed ID: 35538382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.
    Vogt DJ; Vogt KA; Gmur SJ; Scullion JJ; Suntana AS; Daryanto S; Sigurðardóttir R
    Environ Res; 2016 Jan; 144(Pt B):27-38. PubMed ID: 26552634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomics and physiological analyses reveal co-ordinated alteration of metabolic pathways in Jatropha curcas drought tolerance.
    Sapeta H; Lourenço T; Lorenz S; Grumaz C; Kirstahler P; Barros PM; Costa JM; Sohn K; Oliveira MM
    J Exp Bot; 2016 Feb; 67(3):845-60. PubMed ID: 26602946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings.
    Wu Q; Wang S; Thangavel P; Li Q; Zheng H; Bai J; Qiu R
    Int J Phytoremediation; 2011 Sep; 13(8):788-804. PubMed ID: 21972519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential for respirable quartz exposure from North Carolina farm soils.
    Stopford CM; Stopford W
    Scand J Work Environ Health; 1995; 21 Suppl 2():44-6. PubMed ID: 8929688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Soil Conditions on Root Rot of Soybean Caused by
    Cruz DR; Leandro LFS; Mayfield DA; Meng Y; Munkvold GP
    Phytopathology; 2020 Oct; 110(10):1693-1703. PubMed ID: 32401154
    [No Abstract]   [Full Text] [Related]  

  • 19. Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2.
    Jha CK; Patel B; Saraf M
    World J Microbiol Biotechnol; 2012 Mar; 28(3):891-9. PubMed ID: 22805809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of salinity on bioremediation of oil in soil.
    Rhykerd RL; Weaver RW; McInnes KJ
    Environ Pollut; 1995; 90(1):127-30. PubMed ID: 15091510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.