These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23844582)

  • 21. The mRNA Decay Factor CAR-1/LSM14 Regulates Axon Regeneration via Mitochondrial Calcium Dynamics.
    Tang NH; Kim KW; Xu S; Blazie SM; Yee BA; Yeo GW; Jin Y; Chisholm AD
    Curr Biol; 2020 Mar; 30(5):865-876.e7. PubMed ID: 31983639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unraveling the mechanisms of synapse formation and axon regeneration: the awesome power of C. elegans genetics.
    Jin Y
    Sci China Life Sci; 2015 Nov; 58(11):1084-8. PubMed ID: 26563175
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Hisamoto N; Shimizu T; Asai K; Sakai Y; Pastuhov SI; Hanafusa H; Matsumoto K
    J Neurosci; 2019 Jul; 39(29):5662-5672. PubMed ID: 31109965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in Caenorhabditis elegans.
    Pastuhov SI; Fujiki K; Tsuge A; Asai K; Ishikawa S; Hirose K; Matsumoto K; Hisamoto N
    J Neurosci; 2016 Sep; 36(37):9710-21. PubMed ID: 27629720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The kinesin-2 family member KIF3C regulates microtubule dynamics and is required for axon growth and regeneration.
    Gumy LF; Chew DJ; Tortosa E; Katrukha EA; Kapitein LC; Tolkovsky AM; Hoogenraad CC; Fawcett JW
    J Neurosci; 2013 Jul; 33(28):11329-45. PubMed ID: 23843507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors regulating axon regeneration via JNK MAP kinase in Caenorhabditis elegans.
    Shimizu T; Hisamoto N
    J Biochem; 2020 May; 167(5):433-439. PubMed ID: 32091576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aberrant information transfer interferes with functional axon regeneration.
    Ding C; Hammarlund M
    Elife; 2018 Oct; 7():. PubMed ID: 30371349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signal transduction cascades in axon regeneration: insights from C. elegans.
    Hisamoto N; Matsumoto K
    Curr Opin Genet Dev; 2017 Jun; 44():54-60. PubMed ID: 28213159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Progress on axon regeneration in model organisms].
    Jiang P; Wang Z
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2020 Aug; 49(4):500-507. PubMed ID: 32985164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. C. elegans as a genetic model to identify novel cellular and molecular mechanisms underlying nervous system regeneration.
    Chiu H; Alqadah A; Chuang CF; Chang C
    Cell Adh Migr; 2011; 5(5):387-94. PubMed ID: 21975547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondria Localize to Injured Axons to Support Regeneration.
    Han SM; Baig HS; Hammarlund M
    Neuron; 2016 Dec; 92(6):1308-1323. PubMed ID: 28009276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytoskeletal dynamics and transport in growth cone motility and axon guidance.
    Dent EW; Gertler FB
    Neuron; 2003 Oct; 40(2):209-27. PubMed ID: 14556705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental regulation of sensory axon regeneration in the absence of growth cones.
    Jones SL; Selzer ME; Gallo G
    J Neurobiol; 2006 Dec; 66(14):1630-45. PubMed ID: 17058187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Axon regeneration genes identified by RNAi screening in C. elegans.
    Nix P; Hammarlund M; Hauth L; Lachnit M; Jorgensen EM; Bastiani M
    J Neurosci; 2014 Jan; 34(2):629-45. PubMed ID: 24403161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct cellular and molecular mechanisms mediate initial axon development and adult-stage axon regeneration in C. elegans.
    Gabel CV; Antoine F; Chuang CF; Samuel AD; Chang C
    Development; 2008 Mar; 135(6):1129-36. PubMed ID: 18296652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lentivirus Mediating FGF13 Enhances Axon Regeneration after Spinal Cord Injury by Stabilizing Microtubule and Improving Mitochondrial Function.
    Li J; Wang Q; Wang H; Wu Y; Yin J; Chen J; Zheng Z; Jiang T; Xie L; Wu F; Zhang H; Li X; Xu H; Xiao J
    J Neurotrauma; 2018 Feb; 35(3):548-559. PubMed ID: 28922963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal polarization: the cytoskeleton leads the way.
    Stiess M; Bradke F
    Dev Neurobiol; 2011 Jun; 71(6):430-44. PubMed ID: 21557499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The core apoptotic executioner proteins CED-3 and CED-4 promote initiation of neuronal regeneration in Caenorhabditis elegans.
    Pinan-Lucarre B; Gabel CV; Reina CP; Hulme SE; Shevkoplyas SS; Slone RD; Xue J; Qiao Y; Weisberg S; Roodhouse K; Sun L; Whitesides GM; Samuel A; Driscoll M
    PLoS Biol; 2012; 10(5):e1001331. PubMed ID: 22629231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuronal Intrinsic Regenerative Capacity: The Impact of Microtubule Organization and Axonal Transport.
    Murillo B; Mendes Sousa M
    Dev Neurobiol; 2018 Oct; 78(10):952-959. PubMed ID: 29738096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Caenorhabditis elegans Eph receptor activates NCK and N-WASP, and inhibits Ena/VASP to regulate growth cone dynamics during axon guidance.
    Mohamed AM; Boudreau JR; Yu FP; Liu J; Chin-Sang ID
    PLoS Genet; 2012; 8(2):e1002513. PubMed ID: 22383893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.