These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23844673)

  • 41. Advance movement preparation of eye, foot, and hand: a comparative study using movement-related brain potentials.
    Jentzsch I; Leuthold H
    Brain Res Cogn Brain Res; 2002 Aug; 14(2):201-17. PubMed ID: 12067693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Absent movement-related cortical potentials in children with primary motor stereotypies.
    Houdayer E; Walthall J; Belluscio BA; Vorbach S; Singer HS; Hallett M
    Mov Disord; 2014 Aug; 29(9):1134-40. PubMed ID: 24259275
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional connectivity between secondary and primary motor areas underlying hand-foot coordination.
    Byblow WD; Coxon JP; Stinear CM; Fleming MK; Williams G; Müller JF; Ziemann U
    J Neurophysiol; 2007 Jul; 98(1):414-22. PubMed ID: 17507503
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mirror activity in the human brain while observing hand movements: a comparison between EEG desynchronization in the mu-range and previous fMRI results.
    Perry A; Bentin S
    Brain Res; 2009 Jul; 1282():126-32. PubMed ID: 19500557
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cortical activity prior to, and during, observation and execution of sequential finger movements.
    Calmels C; Holmes P; Jarry G; Lévèque JM; Hars M; Stam CJ
    Brain Topogr; 2006; 19(1-2):77-88. PubMed ID: 17136468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of movement intention from single-trial movement-related cortical potentials.
    Niazi IK; Jiang N; Tiberghien O; Nielsen JF; Dremstrup K; Farina D
    J Neural Eng; 2011 Dec; 8(6):066009. PubMed ID: 22027549
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural systems underlying observation of humanly impossible movements: an FMRI study.
    Costantini M; Galati G; Ferretti A; Caulo M; Tartaro A; Romani GL; Aglioti SM
    Cereb Cortex; 2005 Nov; 15(11):1761-7. PubMed ID: 15728741
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Movement-related cortical potentials in writer's cramp.
    Deuschl G; Toro C; Matsumoto J; Hallett M
    Ann Neurol; 1995 Dec; 38(6):862-8. PubMed ID: 8526458
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Movement related cortical potentials in a face naming task: influence of the tip-of-the-tongue state.
    Buján A; Lindín M; Díaz F
    Int J Psychophysiol; 2009 Jun; 72(3):235-45. PubMed ID: 19162095
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Movement-related desynchronization of alpha rhythms is lower in athletes than non-athletes: a high-resolution EEG study.
    Del Percio C; Infarinato F; Iacoboni M; Marzano N; Soricelli A; Aschieri P; Eusebi F; Babiloni C
    Clin Neurophysiol; 2010 Apr; 121(4):482-91. PubMed ID: 20097129
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interpreting spatial and temporal neural activity through a recurrent neural network brain-machine interface.
    Sanchez JC; Erdogmus D; Nicolelis MA; Wessberg J; Principe JC
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):213-9. PubMed ID: 16003902
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using the movement-related cortical potential to study motor skill learning.
    Wright DJ; Holmes PS; Smith D
    J Mot Behav; 2011; 43(3):193-201. PubMed ID: 21462065
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The involvement of cognitive processing in a perceptual-motor process examined with EEG time-frequency analysis.
    Katsumata H; Suzuki K; Tanaka T; Imanaka K
    Clin Neurophysiol; 2009 Mar; 120(3):484-96. PubMed ID: 19136298
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The cortical effect of chewing gum during hand movements: A functional MRI study.
    Jang SH; Kwon HC; Kwon HG; Jang WH
    Somatosens Mot Res; 2015; 32(2):110-3. PubMed ID: 26241164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A neurophysiological basis for the coordination between hand and foot movement.
    McIntyre-Robinson AJ; Byblow WD
    J Neurophysiol; 2013 Sep; 110(5):1039-46. PubMed ID: 23741039
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The mode of movement selection. Movement-related cortical potentials prior to freely selected and repetitive movements.
    Dirnberger G; Fickel U; Lindinger G; Lang W; Jahanshahi M
    Exp Brain Res; 1998 May; 120(2):263-72. PubMed ID: 9629968
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes of cortical activity when executing learned motor sequences.
    Lang W; Beisteiner R; Lindinger G; Deecke L
    Exp Brain Res; 1992; 89(2):435-40. PubMed ID: 1623985
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of task parameters from movement-related cortical potentials.
    Gu Y; do Nascimento OF; Lucas MF; Farina D
    Med Biol Eng Comput; 2009 Dec; 47(12):1257-64. PubMed ID: 19730913
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling of movement-related potentials using a fractal approach.
    Uşakli AB
    J Comput Neurosci; 2010 Jun; 28(3):595-603. PubMed ID: 20449765
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional dissociation of temporal processing mechanisms during speech production and hand movement: An ERP study.
    Johari K; Behroozmand R
    Behav Brain Res; 2018 Jul; 347():281-291. PubMed ID: 29577960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.