These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization. Lee E; Kim C; Jang J Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414 [TBL] [Abstract][Full Text] [Related]
24. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H; Schöps O; Woggon U; Niemeyer CM J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889 [TBL] [Abstract][Full Text] [Related]
25. Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates. Stewart MH; Huston AL; Scott AM; Oh E; Algar WR; Deschamps JR; Susumu K; Jain V; Prasuhn DE; Blanco-Canosa J; Dawson PE; Medintz IL ACS Nano; 2013 Oct; 7(10):9489-505. PubMed ID: 24128175 [TBL] [Abstract][Full Text] [Related]
26. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer. Noor MO; Tavares AJ; Krull UJ Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494 [TBL] [Abstract][Full Text] [Related]
27. Multiway study of hybridization in nanoscale semiconductor labeled DNA based on fluorescence resonance energy transfer. Gholami S; Kompany-Zareh M Phys Chem Chem Phys; 2013 Sep; 15(34):14405-13. PubMed ID: 23884154 [TBL] [Abstract][Full Text] [Related]
28. Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-based photonic wires. Heilemann M; Kasper R; Tinnefeld P; Sauer M J Am Chem Soc; 2006 Dec; 128(51):16864-75. PubMed ID: 17177437 [TBL] [Abstract][Full Text] [Related]
29. Single-molecule quantum-dot fluorescence resonance energy transfer. Hohng S; Ha T Chemphyschem; 2005 May; 6(5):956-60. PubMed ID: 15884082 [TBL] [Abstract][Full Text] [Related]
30. Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays. Cywiński PJ; Nchimi Nono K; Charbonnière LJ; Hammann T; Löhmannsröben HG Phys Chem Chem Phys; 2014 Apr; 16(13):6060-7. PubMed ID: 24556813 [TBL] [Abstract][Full Text] [Related]
31. Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality. Algar WR; Khachatrian A; Melinger JS; Huston AL; Stewart MH; Susumu K; Blanco-Canosa JB; Oh E; Dawson PE; Medintz IL J Am Chem Soc; 2017 Jan; 139(1):363-372. PubMed ID: 28009161 [TBL] [Abstract][Full Text] [Related]
32. DNA-directed assembly of supramolecular fluorescent protein energy transfer systems. Kukolka F; Schoeps O; Woggon U; Niemeyer CM Bioconjug Chem; 2007; 18(3):621-7. PubMed ID: 17378598 [TBL] [Abstract][Full Text] [Related]
33. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons. Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992 [TBL] [Abstract][Full Text] [Related]
34. Long time scale blinking kinetics of cyanine fluorophores conjugated to DNA and its effect on Förster resonance energy transfer. Sabanayagam CR; Eid JS; Meller A J Chem Phys; 2005 Dec; 123(22):224708. PubMed ID: 16375496 [TBL] [Abstract][Full Text] [Related]
35. Lanthanides and quantum dots as Förster resonance energy transfer agents for diagnostics and cellular imaging. Geißler D; Linden S; Liermann K; Wegner KD; Charbonnière LJ; Hildebrandt N Inorg Chem; 2014 Feb; 53(4):1824-38. PubMed ID: 24099579 [TBL] [Abstract][Full Text] [Related]
36. Extending FRET cascades on linear DNA photonic wires. Spillmann CM; Buckhout-White S; Oh E; Goldman ER; Ancona MG; Medintz IL Chem Commun (Camb); 2014 Jul; 50(55):7246-9. PubMed ID: 24752334 [TBL] [Abstract][Full Text] [Related]
37. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits. Kalinin S; Sisamakis E; Magennis SW; Felekyan S; Seidel CA J Phys Chem B; 2010 May; 114(18):6197-206. PubMed ID: 20397670 [TBL] [Abstract][Full Text] [Related]
38. Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture. Boeneman K; Deschamps JR; Buckhout-White S; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Stewart MH; Susumu K; Goldman ER; Ancona M; Medintz IL ACS Nano; 2010 Dec; 4(12):7253-66. PubMed ID: 21082822 [TBL] [Abstract][Full Text] [Related]
39. A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors. Vannoy CH; Chong L; Le C; Krull UJ Anal Chim Acta; 2013 Jan; 759():92-9. PubMed ID: 23260681 [TBL] [Abstract][Full Text] [Related]
40. Detection of FRET efficiency in imaging systems by photo-bleaching acceptors. Deng C; Li J; Ma W Talanta; 2010 Jul; 82(2):771-4. PubMed ID: 20602968 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]