These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
714 related articles for article (PubMed ID: 23844838)
41. A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays. Peng X; Chen H; Draney DR; Volcheck W; Schutz-Geschwender A; Olive DM Anal Biochem; 2009 May; 388(2):220-8. PubMed ID: 19248753 [TBL] [Abstract][Full Text] [Related]
42. Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection. Jiang G; Susha AS; Lutich AA; Stefani FD; Feldmann J; Rogach AL ACS Nano; 2009 Dec; 3(12):4127-31. PubMed ID: 19928994 [TBL] [Abstract][Full Text] [Related]
43. Energy relay from an unconventional yellow dye to CdS/CdSe quantum dots for enhanced solar cell performance. Narayanan R; Das A; Deepa M; Srivastava AK Chemphyschem; 2013 Dec; 14(17):4010-21. PubMed ID: 24259302 [TBL] [Abstract][Full Text] [Related]
44. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Dietrich A; Buschmann V; Müller C; Sauer M J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691 [TBL] [Abstract][Full Text] [Related]
45. Solution-phase single quantum dot fluorescence resonance energy transfer. Pons T; Medintz IL; Wang X; English DS; Mattoussi H J Am Chem Soc; 2006 Nov; 128(47):15324-31. PubMed ID: 17117885 [TBL] [Abstract][Full Text] [Related]
46. Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon. Ha HD; Han DJ; Choi JS; Park M; Seo TS Small; 2014 Oct; 10(19):3858-62. PubMed ID: 24976217 [TBL] [Abstract][Full Text] [Related]
47. Förster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores. Hevekerl H; Spielmann T; Chmyrov A; Widengren J J Phys Chem B; 2011 Nov; 115(45):13360-70. PubMed ID: 21928769 [TBL] [Abstract][Full Text] [Related]
48. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer. Noor MO; Shahmuradyan A; Krull UJ Anal Chem; 2013 Feb; 85(3):1860-7. PubMed ID: 23272728 [TBL] [Abstract][Full Text] [Related]
49. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET. Ranjit S; Gurunathan K; Levitus M J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039 [TBL] [Abstract][Full Text] [Related]
50. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. Biju V; Itoh T; Baba Y; Ishikawa M J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259 [TBL] [Abstract][Full Text] [Related]
51. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Shi L; Rosenzweig N; Rosenzweig Z Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141 [TBL] [Abstract][Full Text] [Related]
52. Self-assembled DNA photonic wire. Hannestad JK; Sandin P; Albinsson B Nucleic Acids Symp Ser (Oxf); 2008; (52):685. PubMed ID: 18776565 [TBL] [Abstract][Full Text] [Related]
53. Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein. Zhang Y; Zhang H; Hollins J; Webb ME; Zhou D Phys Chem Chem Phys; 2011 Nov; 13(43):19427-36. PubMed ID: 21971088 [TBL] [Abstract][Full Text] [Related]
54. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Mathur D; Díaz SA; Hildebrandt N; Pensack RD; Yurke B; Biaggne A; Li L; Melinger JS; Ancona MG; Knowlton WB; Medintz IL Chem Soc Rev; 2023 Nov; 52(22):7848-7948. PubMed ID: 37872857 [TBL] [Abstract][Full Text] [Related]
55. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing. Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458 [TBL] [Abstract][Full Text] [Related]
56. Nanophotonic control of the Förster resonance energy transfer efficiency. Blum C; Zijlstra N; Lagendijk A; Wubs M; Mosk AP; Subramaniam V; Vos WL Phys Rev Lett; 2012 Nov; 109(20):203601. PubMed ID: 23215487 [TBL] [Abstract][Full Text] [Related]
59. A potential carcinogenic pyrene derivative under Förster resonance energy transfer to various energy acceptors in nanoscopic environments. Banerjee S; Goswami N; Pal SK Chemphyschem; 2013 Oct; 14(15):3581-93. PubMed ID: 24038989 [TBL] [Abstract][Full Text] [Related]
60. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Algar WR; Krull UJ Anal Chim Acta; 2007 Jan; 581(2):193-201. PubMed ID: 17386444 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]