These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

714 related articles for article (PubMed ID: 23844838)

  • 61. Spectroscopic and photophysical properties of dUTP and internally DNA bound fluorophores for optimized signal detection in biological formats.
    Linck L; Kapusta P; Resch-Genger U
    Photochem Photobiol; 2012; 88(4):867-75. PubMed ID: 22360746
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Directed Energy Transfer through DNA-Templated J-Aggregates.
    Mandal S; Zhou X; Lin S; Yan H; Woodbury N
    Bioconjug Chem; 2019 Jul; 30(7):1870-1879. PubMed ID: 30985113
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Two-step FRET as a structural tool.
    Watrob HM; Pan CP; Barkley MD
    J Am Chem Soc; 2003 Jun; 125(24):7336-43. PubMed ID: 12797808
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A positively charged QDs-based FRET probe for micrococcal nuclease detection.
    Qiu T; Zhao D; Zhou G; Liang Y; He Z; Liu Z; Peng X; Zhou L
    Analyst; 2010 Sep; 135(9):2394-9. PubMed ID: 20676436
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.
    Sindbert S; Kalinin S; Nguyen H; Kienzler A; Clima L; Bannwarth W; Appel B; Müller S; Seidel CA
    J Am Chem Soc; 2011 Mar; 133(8):2463-80. PubMed ID: 21291253
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Anal Chem; 2010 Jan; 82(1):400-5. PubMed ID: 19938821
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesis, characterization and energy transfer studies of fluorescent dye-labeled metal-chelating polymers anchoring pendant thiol groups for surface modification of quantum dots and investigation on their application for pH-responsive controlled release of doxorubicin.
    Nasri S; Bardajee GR; Bayat M
    Colloids Surf B Biointerfaces; 2018 Nov; 171():544-552. PubMed ID: 30096476
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Competition of Charge and Energy Transfer Processes in Donor-Acceptor Fluorescence Pairs: Calibrating the Spectroscopic Ruler.
    Moroz P; Jin Z; Sugiyama Y; Lara D; Razgoniaeva N; Yang M; Kholmicheva N; Khon D; Mattoussi H; Zamkov M
    ACS Nano; 2018 Jun; 12(6):5657-5665. PubMed ID: 29883087
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions.
    Kupstat A; Ritschel T; Kumke MU
    Bioconjug Chem; 2011 Dec; 22(12):2546-57. PubMed ID: 22073970
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Photon cascade with clip-on fluorophores.
    Friedrich F; Heckel A
    Chemphyschem; 2011 Aug; 12(11):2073-5. PubMed ID: 21567707
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Monitoring botulinum neurotoxin a activity with peptide-functionalized quantum dot resonance energy transfer sensors.
    Sapsford KE; Granek J; Deschamps JR; Boeneman K; Blanco-Canosa JB; Dawson PE; Susumu K; Stewart MH; Medintz IL
    ACS Nano; 2011 Apr; 5(4):2687-99. PubMed ID: 21361387
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Single-molecule FRET ruler based on rigid DNA origami blocks.
    Stein IH; Schüller V; Böhm P; Tinnefeld P; Liedl T
    Chemphyschem; 2011 Feb; 12(3):689-95. PubMed ID: 21308944
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Quantum dot-based concentric FRET configuration for the parallel detection of protease activity and concentration.
    Wu M; Petryayeva E; Algar WR
    Anal Chem; 2014 Nov; 86(22):11181-8. PubMed ID: 25361050
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Zinc porphyrin as a donor for FRET in Zn(II)cytochrome c.
    Lee AJ; Ensign AA; Krauss TD; Bren KL
    J Am Chem Soc; 2010 Feb; 132(6):1752-3. PubMed ID: 20102193
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Efficient Long-Range, Directional Energy Transfer through DNA-Templated Dye Aggregates.
    Zhou X; Mandal S; Jiang S; Lin S; Yang J; Liu Y; Whitten DG; Woodbury NW; Yan H
    J Am Chem Soc; 2019 May; 141(21):8473-8481. PubMed ID: 31006232
    [TBL] [Abstract][Full Text] [Related]  

  • 77. FRET from quantum dots to photodecompose undesired acceptors and report the condensation and decondensation of plasmid DNA.
    Biju V; Anas A; Akita H; Shibu ES; Itoh T; Harashima H; Ishikawa M
    ACS Nano; 2012 May; 6(5):3776-88. PubMed ID: 22468986
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier.
    Yun CS; Javier A; Jennings T; Fisher M; Hira S; Peterson S; Hopkins B; Reich NO; Strouse GF
    J Am Chem Soc; 2005 Mar; 127(9):3115-9. PubMed ID: 15740151
    [TBL] [Abstract][Full Text] [Related]  

  • 79. FRET-Modulated Multihybrid Nanoparticles for Brightness-Equalized Single-Wavelength Barcoding.
    Chen C; Corry B; Huang L; Hildebrandt N
    J Am Chem Soc; 2019 Jul; 141(28):11123-11141. PubMed ID: 31251609
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Surface-immobilized self-assembled protein-based quantum dot nanoassemblies.
    Sapsford KE; Medintz IL; Golden JP; Deschamps JR; Uyeda HT; Mattoussi H
    Langmuir; 2004 Aug; 20(18):7720-8. PubMed ID: 15323524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.