BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23844930)

  • 21. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society.
    Luo Z; Zhang S
    Chem Soc Rev; 2012 Jul; 41(13):4736-54. PubMed ID: 22627925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding of nanoparticle receptors to peptide alpha-helices using amino acid-functionalized nanoparticles.
    Ghosh PS; Han G; Erdogan B; Rosado O; Rotello VM
    J Pept Sci; 2008 Feb; 14(2):134-8. PubMed ID: 17973336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces.
    Shen JW; Wu T; Wang Q; Kang Y
    Biomaterials; 2008 Oct; 29(28):3847-55. PubMed ID: 18617259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular biomimetics: nanotechnology and bionanotechnology using genetically engineered peptides.
    Tamerler C; Sarikaya M
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1705-26. PubMed ID: 19376767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-walled carbon nanotube binding peptides: probing tryptophan's importance by unnatural amino acid substitution.
    Su Z; Mui K; Daub E; Leung T; Honek J
    J Phys Chem B; 2007 Dec; 111(51):14411-7. PubMed ID: 18062679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of amphipathic β-sheet peptides: insights and applications.
    Bowerman CJ; Nilsson BL
    Biopolymers; 2012; 98(3):169-84. PubMed ID: 22782560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersable carbon nanotube/gold nanohybrids: evidence for strong electronic interactions.
    Rahman GM; Guldi DM; Zambon E; Pasquato L; Tagmatarchis N; Prato M
    Small; 2005 May; 1(5):527-30. PubMed ID: 17193482
    [No Abstract]   [Full Text] [Related]  

  • 28. Nanoparticle-induced folding and fibril formation of coiled-coil-based model peptides.
    Wagner SC; Roskamp M; Pallerla M; Araghi RR; Schlecht S; Koksch B
    Small; 2010 Jun; 6(12):1321-8. PubMed ID: 20517875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron transfer through α-peptides attached to vertically aligned carbon nanotube arrays: a mechanistic transition.
    Yu J; Zvarec O; Huang DM; Bissett MA; Scanlon DB; Shapter JG; Abell AD
    Chem Commun (Camb); 2012 Jan; 48(8):1132-4. PubMed ID: 22166913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Designed self-assembling peptides as templates for the synthesis of metal nanoparticles.
    Kasotakis E; Mitraki A
    Methods Mol Biol; 2013; 996():195-202. PubMed ID: 23504425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Importance of aromatic content for peptide/single-walled carbon nanotube interactions.
    Zorbas V; Smith AL; Xie H; Ortiz-Acevedo A; Dalton AB; Dieckmann GR; Draper RK; Baughman RH; Musselman IH
    J Am Chem Soc; 2005 Sep; 127(35):12323-8. PubMed ID: 16131210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles.
    Raman S; Machaidze G; Lustig A; Aebi U; Burkhard P
    Nanomedicine; 2006 Jun; 2(2):95-102. PubMed ID: 17292121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles.
    Jang J; Yoon H
    Small; 2005 Dec; 1(12):1195-9. PubMed ID: 17193418
    [No Abstract]   [Full Text] [Related]  

  • 34. Carbon nanotubes encapsulated in wormlike hollow silica shells.
    Grzelczak M; Correa-Duarte MA; Liz-Marzán LM
    Small; 2006 Oct; 2(10):1174-7. PubMed ID: 17193585
    [No Abstract]   [Full Text] [Related]  

  • 35. pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool.
    Nepal D; Geckeler KE
    Small; 2006 Mar; 2(3):406-12. PubMed ID: 17193060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid microstructures from aligned carbon nanotubes and silica particles.
    Agrawal S; Kumar A; Frederick MJ; Ramanath G
    Small; 2005 Aug; 1(8-9):823-6. PubMed ID: 17193532
    [No Abstract]   [Full Text] [Related]  

  • 37. Self-assembling organic nanotubes based on a cyclic peptide architecture.
    Ghadiri MR; Granja JR; Milligan RA; McRee DE; Khazanovich N
    Nature; 1993 Nov; 366(6453):324-7. PubMed ID: 8247126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Short self-assembling peptides as building blocks for modern nanodevices.
    Lakshmanan A; Zhang S; Hauser CA
    Trends Biotechnol; 2012 Mar; 30(3):155-65. PubMed ID: 22197260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of the sequence and size of non-polar residues on self-assembly of amphiphilic peptides.
    Wang K; Keasling JD; Muller SJ
    Int J Biol Macromol; 2005 Sep; 36(4):232-40. PubMed ID: 16055181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
    Moriuchi T; Hirao T
    Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.