These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 23845067)
1. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Kröller-Schön S; Steven S; Kossmann S; Scholz A; Daub S; Oelze M; Xia N; Hausding M; Mikhed Y; Zinssius E; Mader M; Stamm P; Treiber N; Scharffetter-Kochanek K; Li H; Schulz E; Wenzel P; Münzel T; Daiber A Antioxid Redox Signal; 2014 Jan; 20(2):247-66. PubMed ID: 23845067 [TBL] [Abstract][Full Text] [Related]
2. Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. Lee DY; Wauquier F; Eid AA; Roman LJ; Ghosh-Choudhury G; Khazim K; Block K; Gorin Y J Biol Chem; 2013 Oct; 288(40):28668-86. PubMed ID: 23940049 [TBL] [Abstract][Full Text] [Related]
3. Cyclophilin D-mediated angiotensin II-induced NADPH oxidase 4 activation in endothelial mitochondrial dysfunction that can be rescued by gallic acid. Sun J; Liu Y; Chen C; Quarm AK; Xi S; Sun T; Zhang D; Qian J; Ding H; Gao J Eur J Pharmacol; 2023 Feb; 940():175475. PubMed ID: 36563952 [TBL] [Abstract][Full Text] [Related]
4. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Dikalov SI; Nazarewicz RR; Bikineyeva A; Hilenski L; Lassègue B; Griendling KK; Harrison DG; Dikalova AE Antioxid Redox Signal; 2014 Jan; 20(2):281-94. PubMed ID: 24053613 [TBL] [Abstract][Full Text] [Related]
5. Obligatory role of intraluminal O2- in acute endothelin-1 and angiotensin II signaling to mediate endothelial dysfunction and MAPK activation in guinea-pig hearts. Wojtera E; Konior A; Fedoryszak-Kuśka N; Beręsewicz A Int J Mol Sci; 2014 Oct; 15(11):19417-43. PubMed ID: 25350109 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Vorobjeva N; Galkin I; Pletjushkina O; Golyshev S; Zinovkin R; Prikhodko A; Pinegin V; Kondratenko I; Pinegin B; Chernyak B Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165664. PubMed ID: 31926265 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium. Shafique E; Torina A; Reichert K; Colantuono B; Nur N; Zeeshan K; Ravichandran V; Liu Y; Feng J; Zeeshan K; Benjamin LE; Irani K; Harrington EO; Sellke FW; Abid MR Cardiovasc Res; 2017 Feb; 113(2):234-246. PubMed ID: 28088753 [TBL] [Abstract][Full Text] [Related]
8. NOX isoforms in the development of abdominal aortic aneurysm. Siu KL; Li Q; Zhang Y; Guo J; Youn JY; Du J; Cai H Redox Biol; 2017 Apr; 11():118-125. PubMed ID: 27912196 [TBL] [Abstract][Full Text] [Related]
9. Cross talk between mitochondria and NADPH oxidases. Dikalov S Free Radic Biol Med; 2011 Oct; 51(7):1289-301. PubMed ID: 21777669 [TBL] [Abstract][Full Text] [Related]
10. Chronic cigarette smoke exposure triggers a vicious cycle of leukocyte and endothelial-mediated oxidant stress that results in vascular dysfunction. El-Mahdy MA; Abdelghany TM; Hemann C; Ewees MG; Mahgoup EM; Eid MS; Shalaan MT; Alzarie YA; Zweier JL Am J Physiol Heart Circ Physiol; 2020 Jul; 319(1):H51-H65. PubMed ID: 32412791 [TBL] [Abstract][Full Text] [Related]
11. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Daiber A Biochim Biophys Acta; 2010; 1797(6-7):897-906. PubMed ID: 20122895 [TBL] [Abstract][Full Text] [Related]
12. Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Murdoch CE; Alom-Ruiz SP; Wang M; Zhang M; Walker S; Yu B; Brewer A; Shah AM Basic Res Cardiol; 2011 Jun; 106(4):527-38. PubMed ID: 21528437 [TBL] [Abstract][Full Text] [Related]
13. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Kim YM; Kim SJ; Tatsunami R; Yamamura H; Fukai T; Ushio-Fukai M Am J Physiol Cell Physiol; 2017 Jun; 312(6):C749-C764. PubMed ID: 28424170 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice. Roos CM; Hagler M; Zhang B; Oehler EA; Arghami A; Miller JD Am J Physiol Heart Circ Physiol; 2013 Nov; 305(10):H1428-39. PubMed ID: 23997094 [TBL] [Abstract][Full Text] [Related]
15. Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction. Liu CC; Karimi Galougahi K; Weisbrod RM; Hansen T; Ravaie R; Nunez A; Liu YB; Fry N; Garcia A; Hamilton EJ; Sweadner KJ; Cohen RA; Figtree GA Free Radic Biol Med; 2013 Dec; 65():563-572. PubMed ID: 23816524 [TBL] [Abstract][Full Text] [Related]
16. AT2R Activation Prevents Microglia Pro-inflammatory Activation in a NOX-Dependent Manner: Inhibition of PKC Activation and p47 Bhat SA; Sood A; Shukla R; Hanif K Mol Neurobiol; 2019 Apr; 56(4):3005-3023. PubMed ID: 30076526 [TBL] [Abstract][Full Text] [Related]
17. Nitric oxide and oxidative stress in vascular disease. Förstermann U Pflugers Arch; 2010 May; 459(6):923-39. PubMed ID: 20306272 [TBL] [Abstract][Full Text] [Related]
18. Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis. Musicki B; Liu T; Sezen SF; Burnett AL J Sex Med; 2012 Aug; 9(8):1980-7. PubMed ID: 22620981 [TBL] [Abstract][Full Text] [Related]
19. Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain. Chrissobolis S; Banfi B; Sobey CG; Faraci FM J Appl Physiol (1985); 2012 Jul; 113(2):184-91. PubMed ID: 22628375 [TBL] [Abstract][Full Text] [Related]
20. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Daiber A; Di Lisa F; Oelze M; Kröller-Schön S; Steven S; Schulz E; Münzel T Br J Pharmacol; 2017 Jun; 174(12):1670-1689. PubMed ID: 26660451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]