BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 23845139)

  • 1. Localized heuristic inverse quantitative structure activity relationship with bulk descriptors using numerical gradients.
    Stålring J; Almeida PR; Carlsson L; Helgee Ahlberg E; Hasselgren C; Boyer S
    J Chem Inf Model; 2013 Aug; 53(8):2001-17. PubMed ID: 23845139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of machine learning reliability methods for quantifying the applicability domain of QSAR regression models.
    Toplak M; Močnik R; Polajnar M; Bosnić Z; Carlsson L; Hasselgren C; Demšar J; Boyer S; Zupan B; Stålring J
    J Chem Inf Model; 2014 Feb; 54(2):431-41. PubMed ID: 24490838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.
    Mohr JA; Jain BJ; Obermayer K
    J Chem Inf Model; 2008 Sep; 48(9):1868-81. PubMed ID: 18767832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR and classification study of 1,4-dihydropyridine calcium channel antagonists based on least squares support vector machines.
    Yao X; Liu H; Zhang R; Liu M; Hu Z; Panaye A; Doucet JP; Fan B
    Mol Pharm; 2005; 2(5):348-56. PubMed ID: 16196487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of multivariate image analysis applied to quantitative structure-activity relationship (QSAR) analysis by using wavelet-principal component analysis ranking variable selection and least-squares support vector machine regression: QSAR study of checkpoint kinase WEE1 inhibitors.
    Cormanich RA; Goodarzi M; Freitas MP
    Chem Biol Drug Des; 2009 Feb; 73(2):244-52. PubMed ID: 19207427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive variable-weighted support vector machine as optimized by particle swarm optimization algorithm with application of QSAR studies.
    Wen JH; Zhong KJ; Tang LJ; Jiang JH; Wu HL; Shen GL; Yu RQ
    Talanta; 2011 Mar; 84(1):13-8. PubMed ID: 21315891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of antibacterial compounds by machine learning approaches.
    Yang XG; Chen D; Wang M; Xue Y; Chen YZ
    J Comput Chem; 2009 Jun; 30(8):1202-11. PubMed ID: 18988254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic versus stepwise strategies for quantitative structure-activity relationship generation--how much effort may the mining for successful QSAR models take?
    Horvath D; Bonachera F; Solov'ev V; Gaudin C; Varnek A
    J Chem Inf Model; 2007; 47(3):927-39. PubMed ID: 17480052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using kernel alignment to select features of molecular descriptors in a QSAR study.
    Wong WW; Burkowski FJ
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1373-84. PubMed ID: 21339534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential and desirable characteristics of ecotoxicity quantitative structure-activity relationships.
    Schultz TW; Cronin MT
    Environ Toxicol Chem; 2003 Mar; 22(3):599-607. PubMed ID: 12627648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragment-similarity-based QSAR (FS-QSAR) algorithm for ligand biological activity predictions.
    Myint KZ; Ma C; Wang L; Xie XQ
    SAR QSAR Environ Res; 2011 Jun; 22(3):385-410. PubMed ID: 21598200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201.
    Zhao C; Zhang H; Luan F; Zhang R; Liu M; Hu Z; Fan B
    J Mol Graph Model; 2007 Jul; 26(1):246-54. PubMed ID: 17275373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for applying the quantitative structure-activity relationship paradigm.
    Esposito EX; Hopfinger AJ; Madura JD
    Methods Mol Biol; 2004; 275():131-214. PubMed ID: 15141113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors.
    Basak SC; Mills D; Mumtaz MM
    SAR QSAR Environ Res; 2007; 18(1-2):45-55. PubMed ID: 17365958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine.
    Xue CX; Zhang RS; Liu HX; Yao XJ; Liu MC; Hu ZD; Fan BT
    J Chem Inf Comput Sci; 2004; 44(5):1693-700. PubMed ID: 15446828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAMFA: simplifying molecular description for 3D-QSAR.
    Manchester J; Czermiński R
    J Chem Inf Model; 2008 Jun; 48(6):1167-73. PubMed ID: 18503264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TMACC: interpretable correlation descriptors for quantitative structure-activity relationships.
    Melville JL; Hirst JD
    J Chem Inf Model; 2007; 47(2):626-34. PubMed ID: 17381177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-activity relationship modeling of juvenile hormone mimetic compounds for Culex pipiens larvae, with a discussion of descriptor-thinning methods.
    Basak SC; Natarajan R; Mills D; Hawkins DM; Kraker JJ
    J Chem Inf Model; 2006; 46(1):65-77. PubMed ID: 16426041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of the domain of applicability in QSAR modeling.
    Weaver S; Gleeson MP
    J Mol Graph Model; 2008 Jun; 26(8):1315-26. PubMed ID: 18328754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.