These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 23845432)
1. Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk. Gútiez L; Gómez-Sala B; Recio I; del Campo R; Cintas LM; Herranz C; Hernández PE Int J Food Microbiol; 2013 Aug; 166(1):93-101. PubMed ID: 23845432 [TBL] [Abstract][Full Text] [Related]
2. Genetic and biochemical evidence that recombinant Enterococcus spp. strains expressing gelatinase (GelE) produce bovine milk-derived hydrolysates with high angiotensin converting enzyme-inhibitory activity (ACE-IA). Gútiez L; Borrero J; Jiménez JJ; Gómez-Sala B; Recio I; Cintas LM; Herranz C; Hernández PE J Agric Food Chem; 2014 Jun; 62(24):5555-64. PubMed ID: 24877744 [TBL] [Abstract][Full Text] [Related]
3. Molecular characterization of high-level gentamicin-resistant Enterococcus faecalis from chicken meat in Korea. Choi JM; Woo GJ Int J Food Microbiol; 2013 Jul; 165(1):1-6. PubMed ID: 23685465 [TBL] [Abstract][Full Text] [Related]
4. Integrated approach for obtaining bioactive peptides from whey proteins hydrolysed using a new proteolytic lactic acid bacteria. Worsztynowicz P; Białas W; Grajek W Food Chem; 2020 May; 312():126035. PubMed ID: 31901822 [TBL] [Abstract][Full Text] [Related]
5. New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures. Elkhtab E; El-Alfy M; Shenana M; Mohamed A; Yousef AE J Dairy Sci; 2017 Dec; 100(12):9508-9520. PubMed ID: 28964516 [TBL] [Abstract][Full Text] [Related]
6. Comparison of genotypic and phenotypic cluster analyses of virulence determinants and possible role of CRISPR elements towards their incidence in Enterococcus faecalis and Enterococcus faecium. Lindenstrauss AG; Pavlovic M; Bringmann A; Behr J; Ehrmann MA; Vogel RF Syst Appl Microbiol; 2011 Dec; 34(8):553-60. PubMed ID: 21943678 [TBL] [Abstract][Full Text] [Related]
7. Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses. Tamang MD; Moon DC; Kim SR; Kang HY; Lee K; Nam HM; Jang GC; Lee HS; Jung SC; Lim SK Vet Microbiol; 2017 Mar; 201():252-256. PubMed ID: 28284617 [TBL] [Abstract][Full Text] [Related]
8. Comparison of multilocus variable-number tandem-repeat analysis with multilocus sequence typing and pulsed-field gel electrophoresis for Enterococcus faecalis. Sadowy E; Sieńko A; Hryniewicz W Pol J Microbiol; 2011; 60(4):335-9. PubMed ID: 22390069 [TBL] [Abstract][Full Text] [Related]
9. Uncommitted role of enterococcal surface protein, Esp, and origin of isolates on biofilm production by Enterococcus faecalis isolated from bovine mastitis. Elhadidy M; Elsayyad A J Microbiol Immunol Infect; 2013 Apr; 46(2):80-4. PubMed ID: 22520271 [TBL] [Abstract][Full Text] [Related]
10. Novel Natural Angiotensin Converting Enzyme (ACE)-Inhibitory Peptides Derived from Sea Cucumber-Modified Hydrolysates by Adding Exogenous Proline and a Study of Their Structure⁻Activity Relationship. Li J; Liu Z; Zhao Y; Zhu X; Yu R; Dong S; Wu H Mar Drugs; 2018 Aug; 16(8):. PubMed ID: 30081563 [TBL] [Abstract][Full Text] [Related]
11. Genetic diversity and persistent colonization of Enterococcus faecalis on ocular surfaces. Todokoro D; Eguchi H; Suzuki T; Suzuki M; Nakayama-Imaohji H; Kuwahara T; Nomura T; Tomita H; Akiyama H Jpn J Ophthalmol; 2018 Nov; 62(6):699-705. PubMed ID: 30324322 [TBL] [Abstract][Full Text] [Related]
12. Penicillin-resistant, ampicillin-susceptible Enterococcus faecalis of hospital origin: pbp4 gene polymorphism and genetic diversity. Conceição N; da Silva LE; Darini AL; Pitondo-Silva A; de Oliveira AG Infect Genet Evol; 2014 Dec; 28():289-95. PubMed ID: 25445645 [TBL] [Abstract][Full Text] [Related]
13. Spread of multidrug-resistant Enterococcus to animals and humans: an underestimated role for the pig farm environment. Novais C; Freitas AR; Silveira E; Antunes P; Silva R; Coque TM; Peixe L J Antimicrob Chemother; 2013 Dec; 68(12):2746-54. PubMed ID: 23861310 [TBL] [Abstract][Full Text] [Related]
14. Improved identification including MALDI-TOF mass spectrometry analysis of group D streptococci from bovine mastitis and subsequent molecular characterization of corresponding Enterococcus faecalis and Enterococcus faecium isolates. Werner G; Fleige C; Fessler AT; Timke M; Kostrzewa M; Zischka M; Peters T; Kaspar H; Schwarz S Vet Microbiol; 2012 Nov; 160(1-2):162-9. PubMed ID: 22677481 [TBL] [Abstract][Full Text] [Related]
15. Genetic relationships among Enterococcus faecalis isolates from different sources as revealed by multilocus sequence typing. Chen X; Song YQ; Xu HY; Menghe BL; Zhang HP; Sun ZH J Dairy Sci; 2015 Aug; 98(8):5183-93. PubMed ID: 26074239 [TBL] [Abstract][Full Text] [Related]
16. Screening for proteolytically active lactic acid bacteria and bioactivity of peptide hydrolysates obtained with selected strains. Kliche T; Li B; Bockelmann W; Habermann D; Klempt M; de Vrese M; Wutkowski A; Clawin-Raedecker I; Heller KJ Appl Microbiol Biotechnol; 2017 Oct; 101(20):7621-7633. PubMed ID: 28695230 [TBL] [Abstract][Full Text] [Related]
17. Horizontal transfer of antibiotic resistance from Enterococcus faecium of fermented meat origin to clinical isolates of E. faecium and Enterococcus faecalis. Jahan M; Zhanel GG; Sparling R; Holley RA Int J Food Microbiol; 2015 Apr; 199():78-85. PubMed ID: 25647243 [TBL] [Abstract][Full Text] [Related]