BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

721 related articles for article (PubMed ID: 23845494)

  • 21. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Sensors (Basel); 2011; 11(6):6214-36. PubMed ID: 22163951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiway study of hybridization in nanoscale semiconductor labeled DNA based on fluorescence resonance energy transfer.
    Gholami S; Kompany-Zareh M
    Phys Chem Chem Phys; 2013 Sep; 15(34):14405-13. PubMed ID: 23884154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum dot FRET-based probes in thin films grown in microfluidic channels.
    Crivat G; Da Silva SM; Reyes DR; Locascio LE; Gaitan M; Rosenzweig N; Rosenzweig Z
    J Am Chem Soc; 2010 Feb; 132(5):1460-1. PubMed ID: 20073459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compact quantum dot probes for rapid and sensitive DNA detection using highly efficient fluorescence resonant energy transfer.
    Wu CS; Cupps JM; Fan X
    Nanotechnology; 2009 Jul; 20(30):305502. PubMed ID: 19581695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitivity of time-resolved FRET bioassays.
    Wegner KD; Lanh PT; Jennings T; Oh E; Jain V; Fairclough SM; Smith JM; Giovanelli E; Lequeux N; Pons T; Hildebrandt N
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2881-92. PubMed ID: 23496235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction.
    Algar WR; Tavares AJ; Krull UJ
    Anal Chim Acta; 2010 Jul; 673(1):1-25. PubMed ID: 20630173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum dot/carrier-protein/haptens conjugate as a detection nanobioprobe for FRET-based immunoassay of small analytes with all-fiber microfluidic biosensing platform.
    Long F; Gu C; Gu AZ; Shi H
    Anal Chem; 2012 Apr; 84(8):3646-53. PubMed ID: 22455400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows.
    Zhang CY; Johnson LW
    Anal Chem; 2006 Aug; 78(15):5532-7. PubMed ID: 16878892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.
    Okamura Y; Watanabe Y
    Methods Mol Biol; 2006; 335():43-56. PubMed ID: 16785619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast and sensitive analysis of DNA hybridization in a PDMS micro-fluidic channel using fluorescence resonance energy transfer.
    Yea KH; Lee S; Choo J; Oh CH; Lee S
    Chem Commun (Camb); 2006 Apr; (14):1509-11. PubMed ID: 16575443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption and hybridization of oligonucleotides on mercaptoacetic acid-capped CdSe/ZnS quantum dots and quantum dot-oligonucleotide conjugates.
    Algar WR; Krull UJ
    Langmuir; 2006 Dec; 22(26):11346-52. PubMed ID: 17154624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New opportunities in multiplexed optical bioanalyses using quantum dots and donor-acceptor interactions.
    Algar WR; Krull UJ
    Anal Bioanal Chem; 2010 Nov; 398(6):2439-49. PubMed ID: 20512564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum dot-based multiplexed fluorescence resonance energy transfer.
    Clapp AR; Medintz IL; Uyeda HT; Fisher BR; Goldman ER; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2005 Dec; 127(51):18212-21. PubMed ID: 16366574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The specific hybridization of p53 gene on bead-quantum dot complex in microfluidic chip.
    Yoo JH; Kim JS
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7082-5. PubMed ID: 22103129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescent resonance energy transfer (FRET) based detection of a multiplex ligation-dependent probe amplification assay (MLPA) product.
    Ozalp VC; Nygren AO; O'Sullivan CK
    Mol Biosyst; 2008 Sep; 4(9):950-4. PubMed ID: 18704233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection.
    Jiang G; Susha AS; Lutich AA; Stefani FD; Feldmann J; Rogach AL
    ACS Nano; 2009 Dec; 3(12):4127-31. PubMed ID: 19928994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.