These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23845739)

  • 1. β2-Adrenergic agonists and the treatment of skeletal muscle wasting disorders.
    Joassard OR; Durieux AC; Freyssenet DG
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2309-21. PubMed ID: 23845739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders.
    Koopman R; Ryall JG; Church JE; Lynch GS
    Curr Opin Clin Nutr Metab Care; 2009 Nov; 12(6):601-6. PubMed ID: 19741516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential and the pitfalls of beta-adrenoceptor agonists for the management of skeletal muscle wasting.
    Ryall JG; Lynch GS
    Pharmacol Ther; 2008 Dec; 120(3):219-32. PubMed ID: 18834902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease.
    Lynch GS; Ryall JG
    Physiol Rev; 2008 Apr; 88(2):729-67. PubMed ID: 18391178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action.
    Dutt V; Gupta S; Dabur R; Injeti E; Mittal A
    Pharmacol Res; 2015 Sep; 99():86-100. PubMed ID: 26048279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta 2-agonist administration reverses muscle wasting and improves muscle function in aged rats.
    Ryall JG; Plant DR; Gregorevic P; Sillence MN; Lynch GS
    J Physiol; 2004 Feb; 555(Pt 1):175-88. PubMed ID: 14617677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac implications for the use of beta2-adrenoceptor agonists for the management of muscle wasting.
    Molenaar P; Chen L; Parsonage WA
    Br J Pharmacol; 2006 Mar; 147(6):583-6. PubMed ID: 16432500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting.
    Busquets S; Figueras MT; Fuster G; Almendro V; Moore-Carrasco R; Ametller E; Argilés JM; López-Soriano FJ
    Cancer Res; 2004 Sep; 64(18):6725-31. PubMed ID: 15374990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramuscular beta2-agonist administration enhances early regeneration and functional repair in rat skeletal muscle after myotoxic injury.
    Ryall JG; Schertzer JD; Alabakis TM; Gehrig SM; Plant DR; Lynch GS
    J Appl Physiol (1985); 2008 Jul; 105(1):165-72. PubMed ID: 18436698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphodiesterase 4 inhibition reduces skeletal muscle atrophy.
    Hinkle RT; Dolan E; Cody DB; Bauer MB; Isfort RJ
    Muscle Nerve; 2005 Dec; 32(6):775-81. PubMed ID: 16116651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle wasting in heart failure: An overview.
    von Haehling S; Steinbeck L; Doehner W; Springer J; Anker SD
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2257-65. PubMed ID: 23665153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are peroxisome proliferator-activated receptors involved in skeletal muscle wasting during experimental cancer cachexia? Role of beta2-adrenergic agonists.
    Fuster G; Busquets S; Ametller E; Olivan M; Almendro V; de Oliveira CC; Figueras M; López-Soriano FJ; Argilés JM
    Cancer Res; 2007 Jul; 67(13):6512-9. PubMed ID: 17616713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease.
    Langen RC; Gosker HR; Remels AH; Schols AM
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2245-56. PubMed ID: 23827718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic administration of beta2-adrenoceptor agonists, formoterol and salmeterol, elicit skeletal muscle hypertrophy in rats at micromolar doses.
    Ryall JG; Sillence MN; Lynch GS
    Br J Pharmacol; 2006 Mar; 147(6):587-95. PubMed ID: 16432501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucocorticoid-induced skeletal muscle atrophy.
    Schakman O; Kalista S; Barbé C; Loumaye A; Thissen JP
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2163-72. PubMed ID: 23806868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective androgen receptor modulators for the prevention and treatment of muscle wasting associated with cancer.
    Dalton JT; Taylor RP; Mohler ML; Steiner MS
    Curr Opin Support Palliat Care; 2013 Dec; 7(4):345-51. PubMed ID: 24189892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle wasting: the gut microbiota as a new therapeutic target?
    Bindels LB; Delzenne NM
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2186-90. PubMed ID: 23831839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formoterol fumarate and roxithromycin effects on muscle mass in an animal model of cancer cachexia.
    Kenley RA; Denissenko MF; Mullin RJ; Story J; Ekblom J
    Oncol Rep; 2008 May; 19(5):1113-21. PubMed ID: 18425366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions.
    Nicastro H; Artioli GG; Costa Ados S; Solis MY; da Luz CR; Blachier F; Lancha AH
    Amino Acids; 2011 Feb; 40(2):287-300. PubMed ID: 20514547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy.
    Glover EI; Phillips SM
    Curr Opin Clin Nutr Metab Care; 2010 Nov; 13(6):630-4. PubMed ID: 20829685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.