These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 23845877)
1. Metal accumulation and sublethal effects in the sea anemone, Aiptasia pallida, after waterborne exposure to metal mixtures. Brock JR; Bielmyer GK Comp Biochem Physiol C Toxicol Pharmacol; 2013 Sep; 158(3):150-8. PubMed ID: 23845877 [TBL] [Abstract][Full Text] [Related]
2. Copper accumulation and oxidative stress in the sea anemone, Aiptasia pallida, after waterborne copper exposure. Main WP; Ross C; Bielmyer GK Comp Biochem Physiol C Toxicol Pharmacol; 2010 Mar; 151(2):216-21. PubMed ID: 19883794 [TBL] [Abstract][Full Text] [Related]
3. The influence of salinity and copper exposure on copper accumulation and physiological impairment in the sea anemone, Exaiptasia pallida. Patel PP; Bielmyer-Fraser GK Comp Biochem Physiol C Toxicol Pharmacol; 2015 Feb; 168():39-47. PubMed ID: 25451077 [TBL] [Abstract][Full Text] [Related]
4. Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and zinc or nickel exposure. Duckworth CG; Picariello CR; Thomason RK; Patel KS; Bielmyer-Fraser GK Aquat Toxicol; 2017 Jan; 182():120-128. PubMed ID: 27889504 [TBL] [Abstract][Full Text] [Related]
5. Differential accumulation of heavy metals in the sea anemone Anthopleura elegantissima as a function of symbiotic state. Mitchelmore CL; Verde EA; Ringwood AH; Weis VM Aquat Toxicol; 2003 Aug; 64(3):317-29. PubMed ID: 12842595 [TBL] [Abstract][Full Text] [Related]
6. Ni accumulation and effects on a representative Cnidaria - Exaiptasia pallida during single element exposure and in combination with Mn. Iyagbaye L; Reichelt-Brushett A; Benkendorff K Environ Pollut; 2022 Nov; 313():120110. PubMed ID: 36075335 [TBL] [Abstract][Full Text] [Related]
7. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida. Siddiqui S; Goddard RH; Bielmyer-Fraser GK Aquat Toxicol; 2015 Mar; 160():205-13. PubMed ID: 25661886 [TBL] [Abstract][Full Text] [Related]
8. Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and copper exposure. Siddiqui S; Bielmyer-Fraser GK Aquat Toxicol; 2015 Oct; 167():228-39. PubMed ID: 26363274 [TBL] [Abstract][Full Text] [Related]
9. Bioconcentration and depuration of copper, cadmium, and zinc mixtures by the freshwater amphipod Hyalella azteca. Shuhaimi-Othman M; Pascoe D Ecotoxicol Environ Saf; 2007 Jan; 66(1):29-35. PubMed ID: 16647753 [TBL] [Abstract][Full Text] [Related]
10. Effects of Cd, Co, Cu, Ni and Zn on asexual reproduction and early development of the tropical sea anemone Aiptasia pulchella. Howe PL; Reichelt-Brushett AJ; Clark MW Ecotoxicology; 2014 Nov; 23(9):1593-606. PubMed ID: 25119449 [TBL] [Abstract][Full Text] [Related]
11. Effect of humic acid during concurrent chronic waterborne exposure of rainbow trout (Oncorhynchus mykiss) to copper, cadmium and zinc. Kamunde C; MacPhail R Ecotoxicol Environ Saf; 2011 Mar; 74(3):259-69. PubMed ID: 20970854 [TBL] [Abstract][Full Text] [Related]
12. Effect of a polymetallic mixture on metal accumulation and metallothionein response in the clam Ruditapes decussatus. Serafim A; Bebianno MJ Aquat Toxicol; 2010 Sep; 99(3):370-8. PubMed ID: 20557954 [TBL] [Abstract][Full Text] [Related]
13. Influence of environmentally relevant concentrations of Zn, Cd and Ni and their binary mixtures on metal uptake, bioaccumulation and development in larvae of the purple sea urchin Strongylocentrotus purpuratus. Nogueira LS; Domingos-Moreira FXV; Klein RD; Bianchini A; Wood CM Aquat Toxicol; 2021 Jan; 230():105709. PubMed ID: 33296850 [TBL] [Abstract][Full Text] [Related]
14. Development of a chronic, early life-stage sub-lethal toxicity test and recovery assessment for the tropical zooxanthellate sea anemone Aiptasia pulchella. Howe PL; Reichelt-Brushett AJ; Clark MW Ecotoxicol Environ Saf; 2014 Feb; 100():138-47. PubMed ID: 24238742 [TBL] [Abstract][Full Text] [Related]
15. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Götze S; Matoo OB; Beniash E; Saborowski R; Sokolova IM Aquat Toxicol; 2014 Apr; 149():65-82. PubMed ID: 24572072 [TBL] [Abstract][Full Text] [Related]
16. Bioaccumulation and Toxicity of Cadmium, Copper, Nickel, and Zinc and Their Mixtures to Aquatic Insect Communities. Mebane CA; Schmidt TS; Miller JL; Balistrieri LS Environ Toxicol Chem; 2020 Apr; 39(4):812-833. PubMed ID: 31916284 [TBL] [Abstract][Full Text] [Related]
17. Hormonal, morphological, and physiological responses of yellow perch (Perca flavescens) to chronic environmental metal exposures. Levesque HM; Dorval J; Hontela A; Van Der Kraak GJ; Campbell PG J Toxicol Environ Health A; 2003 Apr; 66(7):657-76. PubMed ID: 12746138 [TBL] [Abstract][Full Text] [Related]
18. Investigating the effects of a sub-lethal metal mixture of Cu, Zn and Cd on bioaccumulation and ionoregulation in common carp, Cyprinus carpio. Castaldo G; Pillet M; Slootmaekers B; Bervoets L; Town RM; Blust R; De Boeck G Aquat Toxicol; 2020 Jan; 218():105363. PubMed ID: 31783302 [TBL] [Abstract][Full Text] [Related]
19. Differential effects of copper on three species of scleractinian corals and their algal symbionts (Symbiodinium spp.). Bielmyer GK; Grosell M; Bhagooli R; Baker AC; Langdon C; Gillette P; Capo TR Aquat Toxicol; 2010 Apr; 97(2):125-33. PubMed ID: 20089320 [TBL] [Abstract][Full Text] [Related]
20. Biochemical and metabolic responses of the deep-sea mussel Bathymodiolus platifrons to cadmium and copper exposure. Zhou L; Li M; Zhong Z; Chen H; Wang X; Wang M; Xu Z; Cao L; Lian C; Zhang H; Wang H; Sun Y; Li C Aquat Toxicol; 2021 Jul; 236():105845. PubMed ID: 33984608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]