BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23845991)

  • 1. Dynamic analysis of the combinatorial regulation involving transcription factors and microRNAs in cell fate decisions.
    Yan F; Liu H; Liu Z
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt B):248-57. PubMed ID: 23845991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis.
    Lizé M; Pilarski S; Dobbelstein M
    Cell Death Differ; 2010 Mar; 17(3):452-8. PubMed ID: 19960022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination of miR-192 and miR-22 in p53-Mediated Cell Fate Decision.
    Sun CY; Zhang XP; Wang W
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31561425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination between cell cycle progression and cell fate decision by the p53 and E2F1 pathways in response to DNA damage.
    Zhang XP; Liu F; Wang W
    J Biol Chem; 2010 Oct; 285(41):31571-80. PubMed ID: 20685653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215.
    Georges SA; Biery MC; Kim SY; Schelter JM; Guo J; Chang AN; Jackson AL; Carleton MO; Linsley PS; Cleary MA; Chau BN
    Cancer Res; 2008 Dec; 68(24):10105-12. PubMed ID: 19074876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical behaviors of Rb-E2F pathway including negative feedback loops involving miR449.
    Yan F; Liu H; Hao J; Liu Z
    PLoS One; 2012; 7(9):e43908. PubMed ID: 23028477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA-449 in cell fate determination.
    Lizé M; Klimke A; Dobbelstein M
    Cell Cycle; 2011 Sep; 10(17):2874-82. PubMed ID: 21857159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. E2F1-dependent pathways are involved in amonafide analogue 7-d-induced DNA damage, G2/M arrest, and apoptosis in p53-deficient K562 cells.
    Li Y; Shao J; Shen K; Xu Y; Liu J; Qian X
    J Cell Biochem; 2012 Oct; 113(10):3165-77. PubMed ID: 22593008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p53 Suppresses E2F1-dependent PLK1 expression upon DNA damage by forming p53-E2F1-DNA complex.
    Zhou Z; Cao JX; Li SY; An GS; Ni JH; Jia HT
    Exp Cell Res; 2013 Dec; 319(20):3104-15. PubMed ID: 24076372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response.
    Hattori H; Janky R; Nietfeld W; Aerts S; Madan Babu M; Venkitaraman AR
    Cell Cycle; 2014; 13(16):2572-86. PubMed ID: 25486198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis.
    Powers JT; Hong S; Mayhew CN; Rogers PM; Knudsen ES; Johnson DG
    Mol Cancer Res; 2004 Apr; 2(4):203-14. PubMed ID: 15140942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the MIR155 host gene in physiological and pathological processes.
    Elton TS; Selemon H; Elton SM; Parinandi NL
    Gene; 2013 Dec; 532(1):1-12. PubMed ID: 23246696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response.
    Issler MVC; Mombach JCM
    PLoS One; 2017; 12(10):e0185794. PubMed ID: 28968438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-translational modifications of p53 tumor suppressor: determinants of its functional targets.
    Taira N; Yoshida K
    Histol Histopathol; 2012 Apr; 27(4):437-43. PubMed ID: 22374721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of cell cycle regulation in response to DNA damage: exploring mechanisms of cell-fate determination.
    Iwamoto K; Hamada H; Eguchi Y; Okamoto M
    Biosystems; 2011 Mar; 103(3):384-91. PubMed ID: 21095219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The E2F1-miRNA cancer progression network.
    Knoll S; Emmrich S; Pützer BM
    Adv Exp Med Biol; 2013; 774():135-47. PubMed ID: 23377972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of miR‑34 in gastric cancer: From bench to bedside (Review).
    Xiong S; Hu M; Li C; Zhou X; Chen H
    Oncol Rep; 2019 Nov; 42(5):1635-1646. PubMed ID: 31432176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The p53 protein and its molecular network: modelling a missing link between DNA damage and cell fate.
    Eliaš J; Dimitrio L; Clairambault J; Natalini R
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt B):232-47. PubMed ID: 24113167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The E2F family and the role of E2F1 in apoptosis.
    Wu Z; Zheng S; Yu Q
    Int J Biochem Cell Biol; 2009 Dec; 41(12):2389-97. PubMed ID: 19539777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Expression Profiling and Functional Network Analysis of p53-Regulated MicroRNAs in HepG2 Cells Treated with Doxorubicin.
    Yang Y; Liu W; Ding R; Xiong L; Dou R; Zhang Y; Guo Z
    PLoS One; 2016; 11(2):e0149227. PubMed ID: 26886852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.