BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 23846221)

  • 1. Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing.
    Vörsmann H; Groeber F; Walles H; Busch S; Beissert S; Walczak H; Kulms D
    Cell Death Dis; 2013 Jul; 4(7):e719. PubMed ID: 23846221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D Organotypic Melanoma Spheroid Skin Model.
    Müller I; Kulms D
    J Vis Exp; 2018 May; (135):. PubMed ID: 29863656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation, Drug Treatment, and Immunohistological Analysis of Tri-Culture Spheroid 3D Melanoma-Like Models.
    Schäfer MEA; Klicks J; Hafner M; Rudolf R
    Methods Mol Biol; 2021; 2265():173-183. PubMed ID: 33704714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of Two Dimensional (2D) and Three-Dimensional (3D) Melanoma Primary Cultures as a Tool for In Vitro Drug Resistance Studies.
    Cruz Rodríguez N; Lineros J; Rodríguez CS; Martínez LM; Rodríguez JA
    Methods Mol Biol; 2019; 1913():119-131. PubMed ID: 30666602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caspase-3 cleaves XIAP in a positive feedback loop to sensitize melanoma cells to TRAIL-induced apoptosis.
    Hörnle M; Peters N; Thayaparasingham B; Vörsmann H; Kashkar H; Kulms D
    Oncogene; 2011 Feb; 30(5):575-87. PubMed ID: 20856198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential treatment by ionizing radiation and sodium arsenite dramatically accelerates TRAIL-mediated apoptosis of human melanoma cells.
    Ivanov VN; Zhou H; Hei TK
    Cancer Res; 2007 Jun; 67(11):5397-407. PubMed ID: 17545621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge?
    Friedrich J; Ebner R; Kunz-Schughart LA
    Int J Radiat Biol; 2007; 83(11-12):849-71. PubMed ID: 18058370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL
    Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening for compounds that induce apoptosis of cancer cells grown as multicellular spheroids.
    Herrmann R; Fayad W; Schwarz S; Berndtsson M; Linder S
    J Biomol Screen; 2008 Jan; 13(1):1-8. PubMed ID: 18040052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEG-peptide hydrogels reveal differential effects of matrix microenvironmental cues on melanoma drug sensitivity.
    Tokuda EY; Jones CE; Anseth KS
    Integr Biol (Camb); 2017 Jan; 9(1):76-87. PubMed ID: 28001152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overcoming TRAIL-resistance by sensitizing prostate cancer 3D spheroids with taxanes.
    Grayson KA; Jyotsana N; Ortiz-Otero N; King MR
    PLoS One; 2021; 16(3):e0246733. PubMed ID: 33661931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitization of melanoma cells to TRAIL by UVB-induced and NF-kappaB-mediated downregulation of xIAP.
    Thayaparasingham B; Kunz A; Peters N; Kulms D
    Oncogene; 2009 Jan; 28(3):345-62. PubMed ID: 18978816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human melanoma cells selected for resistance to apoptosis by prolonged exposure to tumor necrosis factor-related apoptosis-inducing ligand are more vulnerable to necrotic cell death induced by cisplatin.
    Zhang XD; Wu JJ; Gillespie S; Borrow J; Hersey P
    Clin Cancer Res; 2006 Feb; 12(4):1355-64. PubMed ID: 16489094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery.
    Meier-Hubberten JC; Sanderson MP
    Methods Mol Biol; 2019; 1953():163-179. PubMed ID: 30912022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of ω-3 fatty acids and cisplatin as a potential alternative strategy for personalized therapy of metastatic melanoma: an in-vitro study.
    Ottes Vasconcelos R; Serini S; de Souza Votto AP; Santos Trindade G; Fanali C; Sgambato A; Calviello G
    Melanoma Res; 2019 Jun; 29(3):270-280. PubMed ID: 30550405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development.
    Bourland J; Fradette J; Auger FA
    Sci Rep; 2018 Sep; 8(1):13191. PubMed ID: 30181613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance of human melanoma cells against the death ligand TRAIL is reversed by ultraviolet-B radiation via downregulation of FLIP.
    Zeise E; Weichenthal M; Schwarz T; Kulms D
    J Invest Dermatol; 2004 Oct; 123(4):746-54. PubMed ID: 15373780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Scale Gene Expression Profiling Platform for Identification of Context-Dependent Drug Responses in Multicellular Tumor Spheroids.
    Senkowski W; Jarvius M; Rubin J; Lengqvist J; Gustafsson MG; Nygren P; Kultima K; Larsson R; Fryknäs M
    Cell Chem Biol; 2016 Nov; 23(11):1428-1438. PubMed ID: 27984028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional and co-culture models for preclinical evaluation of metal-based anticancer drugs.
    Schreiber-Brynzak E; Klapproth E; Unger C; Lichtscheidl-Schultz I; Göschl S; Schweighofer S; Trondl R; Dolznig H; Jakupec MA; Keppler BK
    Invest New Drugs; 2015 Aug; 33(4):835-47. PubMed ID: 26091914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bionic 3D spheroids biosensor chips for high-throughput and dynamic drug screening.
    Wu Q; Wei X; Pan Y; Zou Y; Hu N; Wang P
    Biomed Microdevices; 2018 Sep; 20(4):82. PubMed ID: 30220069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.