These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23846310)

  • 1. ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon.
    Patel JR; Jain A; Chou YY; Baum A; Ha T; García-Sastre A
    EMBO Rep; 2013 Sep; 14(9):780-7. PubMed ID: 23846310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA.
    Anchisi S; Guerra J; Garcin D
    mBio; 2015 Mar; 6(2):e02349. PubMed ID: 25736886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential recognition of viral RNA by RIG-I.
    Baum A; García-Sastre A
    Virulence; 2011; 2(2):166-9. PubMed ID: 21422808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA.
    Lässig C; Matheisl S; Sparrer KM; de Oliveira Mann CC; Moldt M; Patel JR; Goldeck M; Hartmann G; García-Sastre A; Hornung V; Conzelmann KK; Beckmann R; Hopfner KP
    Elife; 2015 Nov; 4():. PubMed ID: 26609812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RIG-I Uses an ATPase-Powered Translocation-Throttling Mechanism for Kinetic Proofreading of RNAs and Oligomerization.
    Devarkar SC; Schweibenz B; Wang C; Marcotrigiano J; Patel SS
    Mol Cell; 2018 Oct; 72(2):355-368.e4. PubMed ID: 30270105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5.
    Louber J; Brunel J; Uchikawa E; Cusack S; Gerlier D
    BMC Biol; 2015 Jul; 13():54. PubMed ID: 26215161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of the beta interferon promoter by unnatural Sendai virus infection requires RIG-I and is inhibited by viral C proteins.
    Strähle L; Marq JB; Brini A; Hausmann S; Kolakofsky D; Garcin D
    J Virol; 2007 Nov; 81(22):12227-37. PubMed ID: 17804509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I.
    Devarkar SC; Wang C; Miller MT; Ramanathan A; Jiang F; Khan AG; Patel SS; Marcotrigiano J
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):596-601. PubMed ID: 26733676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response.
    Baek YM; Yoon S; Hwang YE; Kim DE
    Immune Netw; 2016 Aug; 16(4):249-55. PubMed ID: 27574504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stress granule protein G3BP1 binds viral dsRNA and RIG-I to enhance interferon-β response.
    Kim SS; Sze L; Liu C; Lam KP
    J Biol Chem; 2019 Apr; 294(16):6430-6438. PubMed ID: 30804210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA sensing: the more RIG-I the merrier?
    Rehwinkel J
    EMBO Rep; 2013 Sep; 14(9):751-2. PubMed ID: 23917614
    [No Abstract]   [Full Text] [Related]  

  • 12. ATP-dependent effector-like functions of RIG-I-like receptors.
    Yao H; Dittmann M; Peisley A; Hoffmann HH; Gilmore RH; Schmidt T; Schmidt-Burgk J; Hornung V; Rice CM; Hur S
    Mol Cell; 2015 May; 58(3):541-548. PubMed ID: 25891073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN.
    Samanta M; Iwakiri D; Kanda T; Imaizumi T; Takada K
    EMBO J; 2006 Sep; 25(18):4207-14. PubMed ID: 16946700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling.
    Miyashita M; Oshiumi H; Matsumoto M; Seya T
    Mol Cell Biol; 2011 Sep; 31(18):3802-19. PubMed ID: 21791617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA.
    Childs KS; Randall RE; Goodbourn S
    PLoS One; 2013; 8(5):e64202. PubMed ID: 23671710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LGP2 binds to PACT to regulate RIG-I- and MDA5-mediated antiviral responses.
    Sanchez David RY; Combredet C; Najburg V; Millot GA; Beauclair G; Schwikowski B; Léger T; Camadro JM; Jacob Y; Bellalou J; Jouvenet N; Tangy F; Komarova AV
    Sci Signal; 2019 Oct; 12(601):. PubMed ID: 31575732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RNA binding protein La/SS-B promotes RIG-I-mediated type I and type III IFN responses following Sendai viral infection.
    Mahony R; Broadbent L; Maier-Moore JS; Power UF; Jefferies CA
    Sci Rep; 2017 Nov; 7(1):14537. PubMed ID: 29109527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonencapsidated 5' Copy-Back Defective Interfering Genomes Produced by Recombinant Measles Viruses Are Recognized by RIG-I and LGP2 but Not MDA5.
    Mura M; Combredet C; Najburg V; Sanchez David RY; Tangy F; Komarova AV
    J Virol; 2017 Oct; 91(20):. PubMed ID: 28768856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA.
    Myong S; Cui S; Cornish PV; Kirchhofer A; Gack MU; Jung JU; Hopfner KP; Ha T
    Science; 2009 Feb; 323(5917):1070-4. PubMed ID: 19119185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short double-stranded RNAs with an overhanging 5' ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys.
    Marq JB; Hausmann S; Veillard N; Kolakofsky D; Garcin D
    J Biol Chem; 2011 Feb; 286(8):6108-16. PubMed ID: 21159780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.