These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23846477)

  • 21. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Next-generation integrated microfluidic circuits.
    Mosadegh B; Bersano-Begey T; Park JY; Burns MA; Takayama S
    Lab Chip; 2011 Sep; 11(17):2813-8. PubMed ID: 21799977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications.
    Witters D; Vergauwe N; Vermeir S; Ceyssens F; Liekens S; Puers R; Lammertyn J
    Lab Chip; 2011 Aug; 11(16):2790-4. PubMed ID: 21720645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced combinational microfluidic multiplexer using multiple levels of control pressures.
    Lee DW; Doh I; Kim Y; Cho YH
    Lab Chip; 2013 Sep; 13(18):3658-62. PubMed ID: 23896765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic valves with integrated structured elastomeric membranes for reversible fluidic entrapment and in situ channel functionalization.
    Vanapalli SA; Wijnperle D; van den Berg A; Mugele F; Duits MH
    Lab Chip; 2009 May; 9(10):1461-7. PubMed ID: 19417915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic T-form mixer utilizing switching electroosmotic flow.
    Lin CH; Fu LM; Chien YS
    Anal Chem; 2004 Sep; 76(18):5265-72. PubMed ID: 15362882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrokinetic-based injection modes for separative microsystems.
    Blas M; Delaunay N; Rocca JL
    Electrophoresis; 2008 Jan; 29(1):20-32. PubMed ID: 18058770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A water-activated pump for portable microfluidic applications.
    Good BT; Bowman CN; Davis RH
    J Colloid Interface Sci; 2007 Jan; 305(2):239-49. PubMed ID: 17081553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimisation and analysis of microreactor designs for microfluidic gradient generation using a purpose built optical detection system for entire chip imaging.
    Abdulla Yusuf H; Baldock SJ; Barber RW; Fielden PR; Goddard NJ; Mohr S; Treves Brown BJ
    Lab Chip; 2009 Jul; 9(13):1882-9. PubMed ID: 19532963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems.
    Cesaro-Tadic S; Dernick G; Juncker D; Buurman G; Kropshofer H; Michel B; Fattinger C; Delamarche E
    Lab Chip; 2004 Dec; 4(6):563-9. PubMed ID: 15570366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An RNA-DNA hybridization assay chip with electrokinetically controlled oil droplet valves for sequential microfluidic operations.
    Weng X; Jiang H; Chon CH; Chen S; Cao H; Li D
    J Biotechnol; 2011 Sep; 155(3):330-7. PubMed ID: 21820019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feedback control system simulator for the control of biological cells in microfluidic cross slots and integrated microfluidic systems.
    Curtis MD; Sheard GJ; Fouras A
    Lab Chip; 2011 Jul; 11(14):2343-51. PubMed ID: 21611664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Passive microfluidic pumping using coupled capillary/evaporation effects.
    Lynn NS; Dandy DS
    Lab Chip; 2009 Dec; 9(23):3422-9. PubMed ID: 19904410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions.
    Nisar A; Afzulpurkar N; Tuantranont A; Mahaisavariya B
    Cardiovasc Eng; 2008 Dec; 8(4):203-18. PubMed ID: 19030990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laser-induced photo-polymerisation for creation of paper-based fluidic devices.
    Sones CL; Katis IN; He PJ; Mills B; Namiq MF; Shardlow P; Ibsen M; Eason RW
    Lab Chip; 2014 Dec; 14(23):4567-74. PubMed ID: 25286149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator.
    Xue X; Patel MK; Kersaudy-Kerhoas M; Bailey C; Desmulliez MP
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):549-60. PubMed ID: 21331958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear pressure-flow relationships for passive microfluidic valves.
    Seker E; Leslie DC; Haj-Hariri H; Landers JP; Utz M; Begley MR
    Lab Chip; 2009 Sep; 9(18):2691-7. PubMed ID: 19704985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.