These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 23846480)
1. Influence of aeration-homogenization system in stirred tank bioreactors, dissolved oxygen concentration and pH control mode on BHK-21 cell growth and metabolism. Núñez EG; Leme J; de Almeida Parizotto L; Chagas WA; de Rezende AG; da Costa BL; Monteiro DC; Boldorini VL; Jorge SA; Astray RM; Pereira CA; Caricati CP; Tonso A Cytotechnology; 2014 Aug; 66(4):605-17. PubMed ID: 23846480 [TBL] [Abstract][Full Text] [Related]
2. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms. Hortsch R; Stratmann A; Weuster-Botz D Biotechnol Bioeng; 2010 Jun; 106(3):443-51. PubMed ID: 20198653 [TBL] [Abstract][Full Text] [Related]
3. Comparison of a production process in a membrane-aerated stirred tank and up to 1000-L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium. Hesse F; Ebel M; Konisch N; Sterlinski R; Kessler W; Wagner R Biotechnol Prog; 2003; 19(3):833-43. PubMed ID: 12790647 [TBL] [Abstract][Full Text] [Related]
4. Application of membrane tubing aeration and perfluorocarbon To improve oxygen delivery to hairy root cultures. Kanokwaree K; Doran PM Biotechnol Prog; 1998 May; 14(3):479-86. PubMed ID: 9622530 [TBL] [Abstract][Full Text] [Related]
5. A comparison of orbitally-shaken and stirred-tank bioreactors: pH modulation and bioreactor type affect CHO cell growth and protein glycosylation. Monteil DT; Juvet V; Paz J; Moniatte M; Baldi L; Hacker DL; Wurm FM Biotechnol Prog; 2016 Sep; 32(5):1174-1180. PubMed ID: 27453130 [TBL] [Abstract][Full Text] [Related]
6. Effects of dissolved oxygen tension and agitation rate on the production of heat-shock protein glycoprotein 96 by MethA tumor cell suspension culture in stirred-tank bioreactors. Tang YJ; Li HM; Hamel JF Bioprocess Biosyst Eng; 2009 Jun; 32(4):475-84. PubMed ID: 18941797 [TBL] [Abstract][Full Text] [Related]
7. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. Xu S; Chen H J Biotechnol; 2016 Aug; 231():149-159. PubMed ID: 27320019 [TBL] [Abstract][Full Text] [Related]
8. Monoterpenoid oxindole alkaloid production by Uncaria tomentosa (Willd) D.C. cell suspension cultures in a stirred tank bioreactor. Trejo-Tapia G; Cerda-García-Rojas CM; Rodríguez-Monroy M; Ramos-Valdivia AC Biotechnol Prog; 2005; 21(3):786-92. PubMed ID: 15932257 [TBL] [Abstract][Full Text] [Related]
9. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes. Karimi A; Golbabaei F; Mehrnia MR; Neghab M; Mohammad K; Nikpey A; Pourmand MR Iranian J Environ Health Sci Eng; 2013 Jan; 10(1):6. PubMed ID: 23369581 [TBL] [Abstract][Full Text] [Related]
10. Automated multi-scale cascade of parallel stirred-tank bioreactors for fast protein expression studies. Von den Eichen N; Bromig L; Sidarava V; Marienberg H; Weuster-Botz D J Biotechnol; 2021 May; 332():103-113. PubMed ID: 33845064 [TBL] [Abstract][Full Text] [Related]
11. Using CFD simulations and statistical analysis to correlate oxygen mass transfer coefficient to both geometrical parameters and operating conditions in a stirred-tank bioreactor. Amer M; Feng Y; Ramsey JD Biotechnol Prog; 2019 May; 35(3):e2785. PubMed ID: 30758910 [TBL] [Abstract][Full Text] [Related]
12. Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Puskeiler R; Kaufmann K; Weuster-Botz D Biotechnol Bioeng; 2005 Mar; 89(5):512-23. PubMed ID: 15669089 [TBL] [Abstract][Full Text] [Related]
13. Cultivation of microplantlets derived from the marine red alga Agardhiella subulata in a stirred tank photobioreactor. Huang YM; Rorrer GL Biotechnol Prog; 2003; 19(2):418-27. PubMed ID: 12675582 [TBL] [Abstract][Full Text] [Related]
14. Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave Bioreactor microcarrier culture in 1-10 L scale. Hundt B; Best C; Schlawin N; Kassner H; Genzel Y; Reichl U Vaccine; 2007 May; 25(20):3987-95. PubMed ID: 17391818 [TBL] [Abstract][Full Text] [Related]
15. Production of carbonyl reductase by Geotrichum candidum in a laboratory scale bioreactor. Bhattacharyya MS; Singh A; Banerjee UC Bioresour Technol; 2008 Dec; 99(18):8765-70. PubMed ID: 18513958 [TBL] [Abstract][Full Text] [Related]
16. Production of human natural killer cells for adoptive immunotherapy using a computer-controlled stirred-tank bioreactor. Pierson BA; Europa AF; Hu WS; Miller JS J Hematother; 1996 Oct; 5(5):475-83. PubMed ID: 8938519 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of various bioreactors for thraustochytrid culture and production ( Sirirak K; Powtongsook S; Suanjit S; Jaritkhuan S PeerJ; 2021; 9():e11405. PubMed ID: 34123585 [TBL] [Abstract][Full Text] [Related]
18. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors. Schmideder A; Severin TS; Cremer JH; Weuster-Botz D J Biotechnol; 2015 Sep; 210():19-24. PubMed ID: 26116137 [TBL] [Abstract][Full Text] [Related]
19. CHO stable pool fed-batch process development of SARS-CoV-2 spike protein production: Impact of aeration conditions and feeding strategies. Reyes SJ; Pham PL; Durocher Y; Henry O Biotechnol Prog; 2024 Sep; ():e3507. PubMed ID: 39329353 [TBL] [Abstract][Full Text] [Related]
20. Agitation, aeration and perfusion modules for cell culture bioreactors. Fenge C; Klein C; Heuer C; Siegel U; Fraune E Cytotechnology; 1993; 11(3):233-44. PubMed ID: 7764129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]