BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23846843)

  • 1. The asymmetry of (-)α-pinene as revealed from its raman optical activity spectrum.
    Wang P; Fang Y; Wu G
    Chirality; 2013 Oct; 25(10):600-5. PubMed ID: 23846843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirality transition in the epoxidation of (-)-alpha-pinene and successive hydrolysis studied by Raman optical activity and DFT.
    Qiu S; Li G; Liu P; Wang C; Feng Z; Li C
    Phys Chem Chem Phys; 2010 Mar; 12(12):3005-13. PubMed ID: 20449393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra-molecular enantiomerism in R-(+)-Limonene as evidenced by the differential bond polarizabilities.
    Shen H; Wu G; Wang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():838-43. PubMed ID: 24704601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereostructural implication by the differential bond polarizability: ROA intensity study of chiral s 2-amino 1-propanol.
    Wu G; Wang P
    Chirality; 2014 May; 26(5):255-9. PubMed ID: 24639243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The charge excitation in the Raman process as correlated from a classical theory for Raman optical activity: the case study of (+)-(R)-methyloxirane.
    Fang Y; Wu G; Wang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Mar; 88():216-9. PubMed ID: 22226895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramolecular Enantiomerism in S(+)2,2-dimethyl -1,3-dioxolane-4-methanol: The Interpretation of Raman Optical Activity Intensity.
    Wu G; Wang P
    Chirality; 2015 Nov; 27(11):820-5. PubMed ID: 26385122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman optical activity spectroscopy by visible-excited coherent anti-Stokes Raman scattering.
    Hiramatsu K; Leproux P; Couderc V; Nagata T; Kano H
    Opt Lett; 2015 Sep; 40(17):4170-3. PubMed ID: 26368739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amide I Raman optical activity of polypeptides: fragment approximation.
    Choi JH; Cho M
    J Chem Phys; 2009 Jan; 130(1):014503. PubMed ID: 19140618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into vibration mode-resolved plasmon enhanced Raman optical activity.
    Li Y; Sheng S; Zhang Z; Liu L; Sun M
    J Colloid Interface Sci; 2014 Feb; 415():165-8. PubMed ID: 24267344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analytical derivative procedure for the calculation of vibrational Raman optical activity spectra.
    Liégeois V; Ruud K; Champagne B
    J Chem Phys; 2007 Nov; 127(20):204105. PubMed ID: 18052417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and vibrational motion of insulin from Raman optical activity spectra.
    Yamamoto S; Kaminský J; Bouř P
    Anal Chem; 2012 Mar; 84(5):2440-51. PubMed ID: 22263577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman optical activity: a powerful technique to investigate essential oil components.
    Baranska M; Chruszcz-Lipska K
    Nat Prod Commun; 2010 Sep; 5(9):1417-20. PubMed ID: 20923000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational Raman optical activity of alpha-lactalbumin: comparison with lysozyme, and evidence for native tertiary folds in molten globule states.
    Wilson G; Ford SJ; Cooper A; Hecht L; Wen ZQ; Barron LD
    J Mol Biol; 1995 Dec; 254(4):747-60. PubMed ID: 7500347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Raman optical activity study of the beta domain of rat metallothionein.
    Luber S; Reiher M
    J Phys Chem B; 2010 Jan; 114(2):1057-63. PubMed ID: 20014759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A confidence level algorithm for the determination of absolute configuration using vibrational circular dichroism or Raman optical activity.
    Debie E; De Gussem E; Dukor RK; Herrebout W; Nafie LA; Bultinck P
    Chemphyschem; 2011 Jun; 12(8):1542-9. PubMed ID: 21542094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared excited Raman optical activity.
    Nafie LA; Brinson BE; Cao X; Rice DA; Rahim OM; Dukor RK; Halas NJ
    Appl Spectrosc; 2007 Oct; 61(10):1103-6. PubMed ID: 17958961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational preference of a chiral terpene: vibrational circular dichroism (VCD), infrared and Raman study of S-(-)-limonene oxide.
    Moreno JR; Ureña FP; González JJ
    Phys Chem Chem Phys; 2009 Apr; 11(14):2459-67. PubMed ID: 19325979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate determination of protein secondary structure content from Raman and Raman optical activity spectra.
    Kinalwa MN; Blanch EW; Doig AJ
    Anal Chem; 2010 Aug; 82(15):6347-9. PubMed ID: 20669990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.
    Janesko BG; Scuseria GE
    J Chem Phys; 2006 Sep; 125(12):124704. PubMed ID: 17014197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational Raman optical activity of 1-phenylethanol and 1-phenylethylamine: revisiting old friends.
    Kapitán J; Johannessen C; Bour P; Hecht L; Barron LD
    Chirality; 2009; 21 Suppl 1():E4-12. PubMed ID: 19544353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.