These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
387 related articles for article (PubMed ID: 23847006)
1. Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. Zeng Q; Han Y; Li H; Chang J J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):42-51. PubMed ID: 23847006 [TBL] [Abstract][Full Text] [Related]
2. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Han Y; Zeng Q; Li H; Chang J Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407 [TBL] [Abstract][Full Text] [Related]
3. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles. Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191 [TBL] [Abstract][Full Text] [Related]
4. Strontium doped bioglass incorporated hydrogel-based scaffold for amplified bone tissue regeneration. Manoochehri H; Ghorbani M; Moosazadeh Moghaddam M; Nourani MR; Makvandi P; Sharifi E Sci Rep; 2022 Jun; 12(1):10160. PubMed ID: 35715472 [TBL] [Abstract][Full Text] [Related]
5. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067 [TBL] [Abstract][Full Text] [Related]
6. Octacalcium phosphate-precipitated alginate scaffold for bone regeneration. Fuji T; Anada T; Honda Y; Shiwaku Y; Koike H; Kamakura S; Sasaki K; Suzuki O Tissue Eng Part A; 2009 Nov; 15(11):3525-35. PubMed ID: 19456237 [TBL] [Abstract][Full Text] [Related]
7. Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels. Ansari S; Sarrion P; Hasani-Sadrabadi MM; Aghaloo T; Wu BM; Moshaverinia A J Biomed Mater Res A; 2017 Nov; 105(11):2957-2967. PubMed ID: 28639378 [TBL] [Abstract][Full Text] [Related]
8. The incorporation of 70s bioactive glass to the osteogenic differentiation of murine embryonic stem cells in 3D bioreactors. Zhang J; Wang M; Cha JM; Mantalaris A J Tissue Eng Regen Med; 2009 Jan; 3(1):63-71. PubMed ID: 19053163 [TBL] [Abstract][Full Text] [Related]
9. Examination of In vitro and In vivo biocompatibility of alginate-hyaluronic acid microbeads As a promising method in cell delivery for kidney regeneration. Amirian J; Van TTT; Bae SH; Jung HI; Choi HJ; Cho HD; Lee BT Int J Biol Macromol; 2017 Dec; 105(Pt 1):143-153. PubMed ID: 28698077 [TBL] [Abstract][Full Text] [Related]
10. Bioactive glass-containing hydrogel delivery system for osteogenic differentiation of human dental pulp stem cells. Sevari SP; Shahnazi F; Chen C; Mitchell JC; Ansari S; Moshaverinia A J Biomed Mater Res A; 2020 Mar; 108(3):557-564. PubMed ID: 31709717 [TBL] [Abstract][Full Text] [Related]
11. Gel microstructure regulates proliferation and differentiation of MC3T3-E1 cells encapsulated in alginate beads. Lee BH; Li B; Guelcher SA Acta Biomater; 2012 May; 8(5):1693-702. PubMed ID: 22306825 [TBL] [Abstract][Full Text] [Related]
12. Modifying alginate with early embryonic extracellular matrix, laminin, and hyaluronic acid for adipose tissue engineering. Chen YS; Chen YY; Hsueh YS; Tai HC; Lin FH J Biomed Mater Res A; 2016 Mar; 104(3):669-677. PubMed ID: 26514819 [TBL] [Abstract][Full Text] [Related]
13. Comparison of MSC properties in two different hydrogels. Impact of mechanical properties. Yu H; Cauchois G; Louvet N; Chen Y; Rahouadj R; Huselstein C Biomed Mater Eng; 2017; 28(s1):S193-S200. PubMed ID: 28372295 [TBL] [Abstract][Full Text] [Related]
14. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Keshaw H; Forbes A; Day RM Biomaterials; 2005 Jul; 26(19):4171-9. PubMed ID: 15664644 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration. Poh PS; Hutmacher DW; Stevens MM; Woodruff MA Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136 [TBL] [Abstract][Full Text] [Related]
16. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application. Li H; Jiang F; Ye S; Wu Y; Zhu K; Wang D Mater Sci Eng C Mater Biol Appl; 2016 May; 62():779-86. PubMed ID: 26952484 [TBL] [Abstract][Full Text] [Related]
17. Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering. Matsuno T; Hashimoto Y; Adachi S; Omata K; Yoshitaka Y; Ozeki Y; Umezu Y; Tabata Y; Nakamura M; Satoh T Dent Mater J; 2008 Nov; 27(6):827-34. PubMed ID: 19241692 [TBL] [Abstract][Full Text] [Related]
18. Cellulose acetate-gelatin-coated boron-bioactive glass biocomposite scaffolds for bone tissue engineering. Moonesi Rad R; Alshemary AZ; Evis Z; Keskin D; Tezcaner A Biomed Mater; 2020 Sep; 15(6):065009. PubMed ID: 32340000 [TBL] [Abstract][Full Text] [Related]
19. Wnt11 plays an important role in the osteogenesis of human mesenchymal stem cells in a PHA/FN/ALG composite scaffold: possible treatment for infected bone defect. Wang H; He XQ; Jin T; Li Y; Fan XY; Wang Y; Xu YQ Stem Cell Res Ther; 2016 Jan; 7():18. PubMed ID: 26818191 [TBL] [Abstract][Full Text] [Related]
20. Peptide REDV-modified polysaccharide hydrogel with endothelial cell selectivity for the promotion of angiogenesis. Wang W; Guo L; Yu Y; Chen Z; Zhou R; Yuan Z J Biomed Mater Res A; 2015 May; 103(5):1703-12. PubMed ID: 25103847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]