These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23847041)

  • 1. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.
    Martani F; Fossati T; Posteri R; Signori L; Porro D; Branduardi P
    Yeast; 2013 Sep; 30(9):365-78. PubMed ID: 23847041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant activity of L-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae.
    Saffi J; Sonego L; Varela QD; Salvador M
    Redox Rep; 2006; 11(4):179-84. PubMed ID: 16984741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae.
    Oh EJ; Wei N; Kwak S; Kim H; Jin YS
    J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium Supplementation Abates the Inhibition Effects of Acetic Acid on Saccharomyces cerevisiae.
    Zhao H; Li J; Wang J; Xu X; Xian M; Liu H; Zhang H
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1573-1589. PubMed ID: 27878508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.
    Ma C; Wei X; Sun C; Zhang F; Xu J; Zhao X; Bai F
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2441-9. PubMed ID: 25698512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.
    Swinnen S; Fernández-Niño M; González-Ramos D; van Maris AJ; Nevoigt E
    FEMS Yeast Res; 2014 Jun; 14(4):642-53. PubMed ID: 24645649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation and tolerance of bacteria against acetic acid.
    Trček J; Mira NP; Jarboe LR
    Appl Microbiol Biotechnol; 2015 Aug; 99(15):6215-29. PubMed ID: 26142387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability.
    Gurdo N; Novelli Poisson GF; Juárez ÁB; Rios de Molina MC; Galvagno MA
    J Appl Microbiol; 2018 Sep; 125(3):766-776. PubMed ID: 29770550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of proline has a protective effect on weak acid stressed Saccharomyces cerevisiae.
    Greetham D; Takagi H; Phister TP
    Antonie Van Leeuwenhoek; 2014 Apr; 105(4):641-52. PubMed ID: 24500002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    Casey E; Sedlak M; Ho NW; Mosier NS
    FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death.
    Giannattasio S; Guaragnella N; Corte-Real M; Passarella S; Marra E
    Gene; 2005 Jul; 354():93-8. PubMed ID: 15894436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc.
    Wan C; Zhang M; Fang Q; Xiong L; Zhao X; Hasunuma T; Bai F; Kondo A
    Metallomics; 2015 Feb; 7(2):322-32. PubMed ID: 25554248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene.
    Zhang JG; Liu XY; He XP; Guo XN; Lu Y; Zhang BR
    Biotechnol Lett; 2011 Feb; 33(2):277-84. PubMed ID: 20953665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.
    Della-Bianca BE; Gombert AK
    Antonie Van Leeuwenhoek; 2013 Dec; 104(6):1083-95. PubMed ID: 24062068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fructose protects baker's yeast against peroxide stress: potential role of catalase and superoxide dismutase.
    Semchyshyn HM; Lozinska LM
    FEMS Yeast Res; 2012 Nov; 12(7):761-73. PubMed ID: 22741594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Acid stress increases the activity of superoxide dismutase and catalase in the yeast Saccharomyces cerevisiae].
    Abrat OB; Semchyshyn HM; Lushchak VI
    Ukr Biokhim Zh (1999); 2007; 79(2):17-23. PubMed ID: 18030745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalase T and Cu,Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae.
    Guaragnella N; Antonacci L; Giannattasio S; Marra E; Passarella S
    FEBS Lett; 2008 Jan; 582(2):210-4. PubMed ID: 18082141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.
    Cheng C; Zhao X; Zhang M; Bai F
    FEMS Yeast Res; 2016 Mar; 16(2):fow010. PubMed ID: 26851403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.
    Cheng C; Zhang M; Xue C; Bai F; Zhao X
    J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity.
    Wang Q; Du X; Ma K; Shi P; Liu W; Sun J; Peng M; Huang Z
    Microbiol Res; 2018 Mar; 207():1-7. PubMed ID: 29458843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.