BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 23847101)

  • 21. Simulations of enhancer evolution provide mechanistic insights into gene regulation.
    Duque T; Samee MA; Kazemian M; Pham HN; Brodsky MH; Sinha S
    Mol Biol Evol; 2014 Jan; 31(1):184-200. PubMed ID: 24097306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide analyses of Shavenbaby target genes reveals distinct features of enhancer organization.
    Menoret D; Santolini M; Fernandes I; Spokony R; Zanet J; Gonzalez I; Latapie Y; Ferrer P; Rouault H; White KP; Besse P; Hakim V; Aerts S; Payre F; Plaza S
    Genome Biol; 2013 Aug; 14(8):R86. PubMed ID: 23972280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flanking sequence context-dependent transcription factor binding in early Drosophila development.
    Stringham JL; Brown AS; Drewell RA; Dresch JM
    BMC Bioinformatics; 2013 Oct; 14():298. PubMed ID: 24093548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-resolution mapping of transcription factor binding sites on native chromatin.
    Kasinathan S; Orsi GA; Zentner GE; Ahmad K; Henikoff S
    Nat Methods; 2014 Feb; 11(2):203-9. PubMed ID: 24336359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes.
    Uhl JD; Zandvakili A; Gebelein B
    PLoS Genet; 2016 Apr; 12(4):e1005981. PubMed ID: 27058369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of Chromatin Accessibility in cis-Regulatory Evolution.
    Peng PC; Khoueiry P; Girardot C; Reddington JP; Garfield DA; Furlong EEM; Sinha S
    Genome Biol Evol; 2019 Jul; 11(7):1813-1828. PubMed ID: 31114856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-Wide Ultrabithorax Binding Analysis Reveals Highly Targeted Genomic Loci at Developmental Regulators and a Potential Connection to Polycomb-Mediated Regulation.
    Shlyueva D; Meireles-Filho AC; Pagani M; Stark A
    PLoS One; 2016; 11(8):e0161997. PubMed ID: 27575958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating binding properties of transcription factors from genome-wide binding profiles.
    Zabet NR; Adryan B
    Nucleic Acids Res; 2015 Jan; 43(1):84-94. PubMed ID: 25432957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial expression of transcription factors in Drosophila embryonic organ development.
    Hammonds AS; Bristow CA; Fisher WW; Weiszmann R; Wu S; Hartenstein V; Kellis M; Yu B; Frise E; Celniker SE
    Genome Biol; 2013 Dec; 14(12):R140. PubMed ID: 24359758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules.
    Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL
    BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling binding specificities of transcription factor pairs with random forests.
    Antikainen AA; Heinonen M; Lähdesmäki H
    BMC Bioinformatics; 2022 Jun; 23(1):212. PubMed ID: 35659235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo.
    Schulz KN; Bondra ER; Moshe A; Villalta JE; Lieb JD; Kaplan T; McKay DJ; Harrison MM
    Genome Res; 2015 Nov; 25(11):1715-26. PubMed ID: 26335634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.
    Shazman S; Lee H; Socol Y; Mann RS; Honig B
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D167-71. PubMed ID: 24271386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The developmental expression dynamics of Drosophila melanogaster transcription factors.
    Adryan B; Teichmann SA
    Genome Biol; 2010; 11(4):R40. PubMed ID: 20384991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution DNA-binding specificity analysis of yeast transcription factors.
    Zhu C; Byers KJ; McCord RP; Shi Z; Berger MF; Newburger DE; Saulrieta K; Smith Z; Shah MV; Radhakrishnan M; Philippakis AA; Hu Y; De Masi F; Pacek M; Rolfs A; Murthy T; Labaer J; Bulyk ML
    Genome Res; 2009 Apr; 19(4):556-66. PubMed ID: 19158363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae.
    Yu X; Lin J; Masuda T; Esumi N; Zack DJ; Qian J
    Nucleic Acids Res; 2006; 34(3):917-27. PubMed ID: 16464824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brachyury proteins regulate target genes through modular binding sites in a cooperative fashion.
    Kusch T; Storck T; Walldorf U; Reuter R
    Genes Dev; 2002 Feb; 16(4):518-29. PubMed ID: 11850413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal coordination of gene networks by Zelda in the early Drosophila embryo.
    Nien CY; Liang HL; Butcher S; Sun Y; Fu S; Gocha T; Kirov N; Manak JR; Rushlow C
    PLoS Genet; 2011 Oct; 7(10):e1002339. PubMed ID: 22028675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A transcription factor collective defines cardiac cell fate and reflects lineage history.
    Junion G; Spivakov M; Girardot C; Braun M; Gustafson EH; Birney E; Furlong EE
    Cell; 2012 Feb; 148(3):473-86. PubMed ID: 22304916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.