BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 23847160)

  • 1. Process cost and facility considerations in the selection of primary cell culture clarification technology.
    Felo M; Christensen B; Higgins J
    Biotechnol Prog; 2013; 29(5):1239-45. PubMed ID: 23847160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a filter train for precipitate removal in monoclonal antibody downstream processing.
    Kandula S; Babu S; Jin M; Shukla AA
    Biotechnol Appl Biochem; 2009 Oct; 54(3):149-55. PubMed ID: 19656082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a single-use disk stack centrifuge for improved efficiency and sustainability at 1000 L GMP manufacturing scale.
    Walker J; Lam Y; Loman A; Smelko JP; Rohr M
    Biotechnol Bioeng; 2023 Nov; 120(11):3347-3356. PubMed ID: 37539666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clarification of recombinant proteins from high cell density mammalian cell culture systems using new improved depth filters.
    Singh N; Pizzelli K; Romero JK; Chrostowski J; Evangelist G; Hamzik J; Soice N; Cheng KS
    Biotechnol Bioeng; 2013 Jul; 110(7):1964-72. PubMed ID: 23334838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust depth filter sizing for centrate clarification.
    Lutz H; Chefer K; Felo M; Cacace B; Hove S; Wang B; Blanchard M; Oulundsen G; Piper R; Zhao X
    Biotechnol Prog; 2015; 31(6):1542-50. PubMed ID: 26518411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pretreatments for enhancing clarification efficiency of depth filtration during production of monoclonal antibody therapeutics.
    Hadpe SR; Mohite V; Alva S; Rathore AS
    Biotechnol Prog; 2020 Sep; 36(5):e2996. PubMed ID: 32223061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-stage chromatographic clarification of Chinese Hamster Ovary cell harvest reduces cost of protein production.
    O'Mara B; Singh NK; Menendez A; Tipton B; Vail A; Voloshin A; Buechler Y; Anderson SM
    Biotechnol Prog; 2023 Mar; 39(2):e3323. PubMed ID: 36598038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A scale-down mimic for mapping the process performance of centrifugation, depth and sterile filtration.
    Joseph A; Kenty B; Mollet M; Hwang K; Rose S; Goldrick S; Bender J; Farid SS; Titchener-Hooker N
    Biotechnol Bioeng; 2016 Sep; 113(9):1934-41. PubMed ID: 26927621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra scale-down approaches for clarification of mammalian cell culture broths in disc-stack centrifuges.
    Zaman F; Allan CM; Ho SV
    Biotechnol Prog; 2009; 25(6):1709-16. PubMed ID: 19768799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production.
    Dizon-Maspat J; Bourret J; D'Agostini A; Li F
    Biotechnol Bioeng; 2012 Apr; 109(4):962-70. PubMed ID: 22094920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new, integrated, continuous purification process template for monoclonal antibodies: Process modeling and cost of goods studies.
    Xenopoulos A
    J Biotechnol; 2015 Nov; 213():42-53. PubMed ID: 25959171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of antiapoptosis genes on clarification performance.
    Potty AS; Xenopoulos A; Patel S; Prentice H; Dileo A
    Biotechnol Prog; 2014; 30(1):100-7. PubMed ID: 24124050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploitation of the adsorptive properties of depth filters for host cell protein removal during monoclonal antibody purification.
    Yigzaw Y; Piper R; Tran M; Shukla AA
    Biotechnol Prog; 2006; 22(1):288-96. PubMed ID: 16454522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clarification of vaccines: An overview of filter based technology trends and best practices.
    Besnard L; Fabre V; Fettig M; Gousseinov E; Kawakami Y; Laroudie N; Scanlan C; Pattnaik P
    Biotechnol Adv; 2016; 34(1):1-13. PubMed ID: 26657051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated economic and experimental framework for screening of primary recovery technologies for high cell density CHO cultures.
    Popova D; Stonier A; Pain D; Titchener-Hooker NJ; Farid SS
    Biotechnol J; 2016 Jul; 11(7):899-909. PubMed ID: 27067803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality.
    Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A
    J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.
    Pollock J; Bolton G; Coffman J; Ho SV; Bracewell DG; Farid SS
    J Chromatogr A; 2013 Apr; 1284():17-27. PubMed ID: 23453463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary Clarification of CHO Harvested Cell Culture Fluid using an Acoustic Separator.
    Hong JS; Azer N; Agarabi C; Fratz-Berilla EJ
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Case Study: an accelerated 8-day monoclonal antibody production process based on high seeding densities.
    Padawer I; Ling WL; Bai Y
    Biotechnol Prog; 2013; 29(3):829-32. PubMed ID: 23596148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decisional tool to assess current and future process robustness in an antibody purification facility.
    Stonier A; Simaria AS; Smith M; Farid SS
    Biotechnol Prog; 2012 Jul; 28(4):1019-28. PubMed ID: 22641562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.