These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 23847160)
1. Process cost and facility considerations in the selection of primary cell culture clarification technology. Felo M; Christensen B; Higgins J Biotechnol Prog; 2013; 29(5):1239-45. PubMed ID: 23847160 [TBL] [Abstract][Full Text] [Related]
2. Design of a filter train for precipitate removal in monoclonal antibody downstream processing. Kandula S; Babu S; Jin M; Shukla AA Biotechnol Appl Biochem; 2009 Oct; 54(3):149-55. PubMed ID: 19656082 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of a single-use disk stack centrifuge for improved efficiency and sustainability at 1000 L GMP manufacturing scale. Walker J; Lam Y; Loman A; Smelko JP; Rohr M Biotechnol Bioeng; 2023 Nov; 120(11):3347-3356. PubMed ID: 37539666 [TBL] [Abstract][Full Text] [Related]
4. Clarification of recombinant proteins from high cell density mammalian cell culture systems using new improved depth filters. Singh N; Pizzelli K; Romero JK; Chrostowski J; Evangelist G; Hamzik J; Soice N; Cheng KS Biotechnol Bioeng; 2013 Jul; 110(7):1964-72. PubMed ID: 23334838 [TBL] [Abstract][Full Text] [Related]
5. Robust depth filter sizing for centrate clarification. Lutz H; Chefer K; Felo M; Cacace B; Hove S; Wang B; Blanchard M; Oulundsen G; Piper R; Zhao X Biotechnol Prog; 2015; 31(6):1542-50. PubMed ID: 26518411 [TBL] [Abstract][Full Text] [Related]
6. Pretreatments for enhancing clarification efficiency of depth filtration during production of monoclonal antibody therapeutics. Hadpe SR; Mohite V; Alva S; Rathore AS Biotechnol Prog; 2020 Sep; 36(5):e2996. PubMed ID: 32223061 [TBL] [Abstract][Full Text] [Related]
7. Cost-efficient cell clarification using an intensified fluidized bed centrifugation platform approach. Saballus M; Filz TJ; Pollard D; Kampmann M Biotechnol Bioeng; 2024 Aug; 121(8):2289-2299. PubMed ID: 37334463 [TBL] [Abstract][Full Text] [Related]
8. Single-stage chromatographic clarification of Chinese Hamster Ovary cell harvest reduces cost of protein production. O'Mara B; Singh NK; Menendez A; Tipton B; Vail A; Voloshin A; Buechler Y; Anderson SM Biotechnol Prog; 2023 Mar; 39(2):e3323. PubMed ID: 36598038 [TBL] [Abstract][Full Text] [Related]
9. A scale-down mimic for mapping the process performance of centrifugation, depth and sterile filtration. Joseph A; Kenty B; Mollet M; Hwang K; Rose S; Goldrick S; Bender J; Farid SS; Titchener-Hooker N Biotechnol Bioeng; 2016 Sep; 113(9):1934-41. PubMed ID: 26927621 [TBL] [Abstract][Full Text] [Related]
10. Ultra scale-down approaches for clarification of mammalian cell culture broths in disc-stack centrifuges. Zaman F; Allan CM; Ho SV Biotechnol Prog; 2009; 25(6):1709-16. PubMed ID: 19768799 [TBL] [Abstract][Full Text] [Related]
11. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production. Dizon-Maspat J; Bourret J; D'Agostini A; Li F Biotechnol Bioeng; 2012 Apr; 109(4):962-70. PubMed ID: 22094920 [TBL] [Abstract][Full Text] [Related]
12. A new, integrated, continuous purification process template for monoclonal antibodies: Process modeling and cost of goods studies. Xenopoulos A J Biotechnol; 2015 Nov; 213():42-53. PubMed ID: 25959171 [TBL] [Abstract][Full Text] [Related]
13. The effect of antiapoptosis genes on clarification performance. Potty AS; Xenopoulos A; Patel S; Prentice H; Dileo A Biotechnol Prog; 2014; 30(1):100-7. PubMed ID: 24124050 [TBL] [Abstract][Full Text] [Related]
14. Exploitation of the adsorptive properties of depth filters for host cell protein removal during monoclonal antibody purification. Yigzaw Y; Piper R; Tran M; Shukla AA Biotechnol Prog; 2006; 22(1):288-96. PubMed ID: 16454522 [TBL] [Abstract][Full Text] [Related]
15. Clarification of vaccines: An overview of filter based technology trends and best practices. Besnard L; Fabre V; Fettig M; Gousseinov E; Kawakami Y; Laroudie N; Scanlan C; Pattnaik P Biotechnol Adv; 2016; 34(1):1-13. PubMed ID: 26657051 [TBL] [Abstract][Full Text] [Related]
16. Integrated economic and experimental framework for screening of primary recovery technologies for high cell density CHO cultures. Popova D; Stonier A; Pain D; Titchener-Hooker NJ; Farid SS Biotechnol J; 2016 Jul; 11(7):899-909. PubMed ID: 27067803 [TBL] [Abstract][Full Text] [Related]
17. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
18. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture. Pollock J; Bolton G; Coffman J; Ho SV; Bracewell DG; Farid SS J Chromatogr A; 2013 Apr; 1284():17-27. PubMed ID: 23453463 [TBL] [Abstract][Full Text] [Related]
19. Primary Clarification of CHO Harvested Cell Culture Fluid using an Acoustic Separator. Hong JS; Azer N; Agarabi C; Fratz-Berilla EJ J Vis Exp; 2020 May; (159):. PubMed ID: 32478745 [TBL] [Abstract][Full Text] [Related]
20. Case Study: an accelerated 8-day monoclonal antibody production process based on high seeding densities. Padawer I; Ling WL; Bai Y Biotechnol Prog; 2013; 29(3):829-32. PubMed ID: 23596148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]