These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23847511)

  • 1. An automated method for identifying artifact in independent component analysis of resting-state FMRI.
    Bhaganagarapu K; Jackson GD; Abbott DF
    Front Hum Neurosci; 2013; 7():343. PubMed ID: 23847511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM.
    Wang Y; Li TQ
    Front Hum Neurosci; 2015; 9():259. PubMed ID: 26005413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time course based artifact identification for independent components of resting-state FMRI.
    Rummel C; Verma RK; Schöpf V; Abela E; Hauf M; Berruecos JF; Wiest R
    Front Hum Neurosci; 2013; 7():214. PubMed ID: 23734119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.
    Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.
    Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the effects of systemic low frequency oscillations measured in the periphery on the independent component analysis results of resting state networks.
    Tong Y; Hocke LM; Nickerson LD; Licata SC; Lindsey KP; Frederick Bd
    Neuroimage; 2013 Aug; 76():202-15. PubMed ID: 23523805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
    Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J
    Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG artifact elimination by extraction of ICA-component features using image processing algorithms.
    Radüntz T; Scouten J; Hochmuth O; Meffert B
    J Neurosci Methods; 2015 Mar; 243():84-93. PubMed ID: 25666892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automating the Human Connectome Project's Temporal ICA Pipeline.
    Yang C; Coalson TS; Smith SM; Elam JS; Van Essen DC; Glasser MF
    bioRxiv; 2024 Jan; ():. PubMed ID: 38293188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards data-driven group inferences of resting-state fMRI data in rodents: Comparison of group ICA, GIG-ICA, and IVA-GL.
    To XV; Vegh V; Nasrallah FA
    J Neurosci Methods; 2022 Jan; 366():109411. PubMed ID: 34793852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time EEG artifact correction during fMRI using ICA.
    Mayeli A; Zotev V; Refai H; Bodurka J
    J Neurosci Methods; 2016 Dec; 274():27-37. PubMed ID: 27697458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Classification of Resting-State fMRI ICA Components Using a Deep Siamese Network.
    Chou Y; Chang C; Remedios SW; Butman JA; Chan L; Pham DL
    Front Neurosci; 2022; 16():768634. PubMed ID: 35368292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Removal of Cardiac Interference (ARCI): A New Approach for EEG Data.
    Tamburro G; Stone DB; Comani S
    Front Neurosci; 2019; 13():441. PubMed ID: 31133785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain functional networks extraction based on fMRI artifact removal: Single subject and group approaches.
    Du Y; Allen EA; He H; Sui J; Calhoun VD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1026-9. PubMed ID: 25570136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-fMRI: Ballistocardiogram Artifact Reduction by Surrogate Method for Improved Source Localization.
    Rusiniak M; Bornfleth H; Cho JH; Wolak T; Ille N; Berg P; Scherg M
    Front Neurosci; 2022; 16():842420. PubMed ID: 35360180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development, validation, and comparison of ICA-based gradient artifact reduction algorithms for simultaneous EEG-spiral in/out and echo-planar fMRI recordings.
    Ryali S; Glover GH; Chang C; Menon V
    Neuroimage; 2009 Nov; 48(2):348-61. PubMed ID: 19580873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification and Extraction of Resting State Networks Using Healthy and Epilepsy fMRI Data.
    Vergun S; Gaggl W; Nair VA; Suhonen JI; Birn RM; Ahmed AS; Meyerand ME; Reuss J; DeYoe EA; Prabhakaran V
    Front Neurosci; 2016; 10():440. PubMed ID: 27729846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphical interface for automated management of motion artifact within fMRI acquisitions: INFOBAR.
    Anand M; Diekfuss JA; Slutsky-Ganesh AB; Bonnette S; Grooms DR; Myer GD
    SoftwareX; 2020; 12():. PubMed ID: 33447655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic classification of artifactual ICA-components for artifact removal in EEG signals.
    Winkler I; Haufe S; Tangermann M
    Behav Brain Funct; 2011 Aug; 7():30. PubMed ID: 21810266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel spatiotemporal tool for the automatic classification of fMRI noise based on Independent Component Analysis.
    Tassi E; Maggioni E; Cerutti S; Brambilla P; Bianchi AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1718-1721. PubMed ID: 33018328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.