These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23847607)

  • 61. Sulfurovum aggregans sp. nov., a hydrogen-oxidizing, thiosulfate-reducing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent chimney, and an emended description of the genus Sulfurovum.
    Mino S; Kudo H; Arai T; Sawabe T; Takai K; Nakagawa S
    Int J Syst Evol Microbiol; 2014 Sep; 64(Pt 9):3195-3201. PubMed ID: 24966202
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Thiofractor thiocaminus gen. nov., sp. nov., a novel hydrogen-oxidizing, sulfur-reducing epsilonproteobacterium isolated from a deep-sea hydrothermal vent chimney in the Nikko Seamount field of the northern Mariana Arc.
    Makita H; Nakagawa S; Miyazaki M; Nakamura K; Inagaki F; Takai K
    Arch Microbiol; 2012 Sep; 194(9):785-94. PubMed ID: 22526267
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Linking regional variation of epibiotic bacterial diversity and trophic ecology in a new species of Kiwaidae (Decapoda, Anomura) from East Scotia Ridge (Antarctica) hydrothermal vents.
    Zwirglmaier K; Reid WD; Heywood J; Sweeting CJ; Wigham BD; Polunin NV; Hawkes JA; Connelly DP; Pearce D; Linse K
    Microbiologyopen; 2015 Feb; 4(1):136-50. PubMed ID: 25515351
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts.
    Huber JA; Cantin HV; Huse SM; Welch DB; Sogin ML; Butterfield DA
    FEMS Microbiol Ecol; 2010 Sep; 73(3):538-49. PubMed ID: 20533947
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Arsenic and sulfur nanoparticle synthesis mimicking environmental conditions of submarine shallow-water hydrothermal vents.
    Durán-Toro V; Rezwan K; Bühring SI; Maas M
    J Environ Sci (China); 2022 Jan; 111():301-312. PubMed ID: 34949360
    [TBL] [Abstract][Full Text] [Related]  

  • 66. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria.
    Pérez-Rodríguez I; Bolognini M; Ricci J; Bini E; Vetriani C
    ISME J; 2015 May; 9(5):1222-34. PubMed ID: 25397946
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Endemicity of the cosmopolitan mesophilic chemolithoautotroph Sulfurimonas at deep-sea hydrothermal vents.
    Mino S; Nakagawa S; Makita H; Toki T; Miyazaki J; Sievert SM; Polz MF; Inagaki F; Godfroy A; Kato S; Watanabe H; Nunoura T; Nakamura K; Imachi H; Watsuji TO; Kojima S; Takai K; Sawabe T
    ISME J; 2017 Apr; 11(4):909-919. PubMed ID: 28045457
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents.
    Anderson RE; Sogin ML; Baross JA
    FEMS Microbiol Ecol; 2015 Jan; 91(1):1-11. PubMed ID: 25764538
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents.
    Meier DV; Pjevac P; Bach W; Hourdez S; Girguis PR; Vidoudez C; Amann R; Meyerdierks A
    ISME J; 2017 Jul; 11(7):1545-1558. PubMed ID: 28375213
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fauna of the Kemp Caldera and its upper bathyal hydrothermal vents (South Sandwich Arc, Antarctica).
    Linse K; Copley JT; Connelly DP; Larter RD; Pearce DA; Polunin NVC; Rogers AD; Chen C; Clarke A; Glover AG; Graham AGC; Huvenne VAI; Marsh L; Reid WDK; Roterman CN; Sweeting CJ; Zwirglmaier K; Tyler PA
    R Soc Open Sci; 2019 Nov; 6(11):191501. PubMed ID: 31827872
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Nematode of the Mid-Atlantic Ridge Hydrothermal Vents Harbors a Possible Symbiotic Relationship.
    Bellec L; Cambon-Bonavita MA; Cueff-Gauchard V; Durand L; Gayet N; Zeppilli D
    Front Microbiol; 2018; 9():2246. PubMed ID: 30294317
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deep-sea hydrothermal vents: potential hot spots for natural products discovery?
    Thornburg CC; Zabriskie TM; McPhail KL
    J Nat Prod; 2010 Mar; 73(3):489-99. PubMed ID: 20099811
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge.
    Voordeckers JW; Do MH; Hügler M; Ko V; Sievert SM; Vetriani C
    Extremophiles; 2008 Sep; 12(5):627-40. PubMed ID: 18523725
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system.
    Tang K; Liu K; Jiao N; Zhang Y; Chen CT
    PLoS One; 2013; 8(8):e72958. PubMed ID: 23940820
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genetic diversity of archaea in deep-sea hydrothermal vent environments.
    Takai K; Horikoshi K
    Genetics; 1999 Aug; 152(4):1285-97. PubMed ID: 10430559
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Galenea microaerophila gen. nov., sp. nov., a mesophilic, microaerophilic, chemosynthetic, thiosulfate-oxidizing bacterium isolated from a shallow-water hydrothermal vent.
    Giovannelli D; Grosche A; Starovoytov V; Yakimov M; Manini E; Vetriani C
    Int J Syst Evol Microbiol; 2012 Dec; 62(Pt 12):3060-3066. PubMed ID: 22307509
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents.
    Campbell BJ; Jeanthon C; Kostka JE; Luther GW; Cary SC
    Appl Environ Microbiol; 2001 Oct; 67(10):4566-72. PubMed ID: 11571157
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evidence of Vent-Adaptation in Sponges Living at the Periphery of Hydrothermal Vent Environments: Ecological and Evolutionary Implications.
    Georgieva MN; Taboada S; Riesgo A; Díez-Vives C; De Leo FC; Jeffreys RM; Copley JT; Little CTS; Ríos P; Cristobo J; Hestetun JT; Glover AG
    Front Microbiol; 2020; 11():1636. PubMed ID: 32793148
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System.
    Gomez-Saez GV; Pop Ristova P; Sievert SM; Elvert M; Hinrichs KU; Bühring SI
    Front Microbiol; 2017; 8():702. PubMed ID: 28484442
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens.
    Nakagawa S; Takaki Y; Shimamura S; Reysenbach AL; Takai K; Horikoshi K
    Proc Natl Acad Sci U S A; 2007 Jul; 104(29):12146-50. PubMed ID: 17615243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.