BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 23848398)

  • 1. Structural basis for the divergence of substrate specificity and biological function within HAD phosphatases in lipopolysaccharide and sialic acid biosynthesis.
    Daughtry KD; Huang H; Malashkevich V; Patskovsky Y; Liu W; Ramagopal U; Sauder JM; Burley SK; Almo SC; Dunaway-Mariano D; Allen KN
    Biochemistry; 2013 Aug; 52(32):5372-86. PubMed ID: 23848398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-function analysis of 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphatase defines specificity elements in type C0 haloalkanoate dehalogenase family members.
    Lu Z; Wang L; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2009 Jan; 284(2):1224-33. PubMed ID: 18986982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tail of KdsC: conformational changes control the activity of a haloacid dehalogenase superfamily phosphatase.
    Biswas T; Yi L; Aggarwal P; Wu J; Rubin JR; Stuckey JA; Woodard RW; Tsodikov OV
    J Biol Chem; 2009 Oct; 284(44):30594-603. PubMed ID: 19726684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-bound structures of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Moraxella catarrhalis reveal a water channel connecting to the active site for the second step of catalysis.
    Dhindwal S; Priyadarshini P; Patil DN; Tapas S; Kumar P; Tomar S; Kumar P
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):239-55. PubMed ID: 25664734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB).
    Wang L; Huang H; Nguyen HH; Allen KN; Mariano PS; Dunaway-Mariano D
    Biochemistry; 2010 Feb; 49(6):1072-81. PubMed ID: 20050615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The X-ray crystallographic structure and specificity profile of HAD superfamily phosphohydrolase BT1666: comparison of paralogous functions in B. thetaiotaomicron.
    Lu Z; Dunaway-Mariano D; Allen KN
    Proteins; 2011 Nov; 79(11):3099-107. PubMed ID: 21989931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron diffraction studies towards deciphering the protonation state of catalytic residues in the bacterial KDN9P phosphatase.
    Bryan T; González JM; Bacik JP; DeNunzio NJ; Unkefer CJ; Schrader TE; Ostermann A; Dunaway-Mariano D; Allen KN; Fisher SZ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Sep; 69(Pt 9):1015-9. PubMed ID: 23989152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants of substrate recognition in the HAD superfamily member D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB) .
    Nguyen HH; Wang L; Huang H; Peisach E; Dunaway-Mariano D; Allen KN
    Biochemistry; 2010 Feb; 49(6):1082-92. PubMed ID: 20050614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HAD superfamily phosphotransferase substrate diversification: structure and function analysis of HAD subclass IIB sugar phosphatase BT4131.
    Lu Z; Dunaway-Mariano D; Allen KN
    Biochemistry; 2005 Jun; 44(24):8684-96. PubMed ID: 15952775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of 3-deoxy-manno-octulosonate cytidylyltransferase from Haemophilus influenzae complexed with the substrate 3-deoxy-manno-octulosonate in the beta-configuration.
    Yoon HJ; Ku MJ; Mikami B; Suh SW
    Acta Crystallogr D Biol Crystallogr; 2008 Dec; 64(Pt 12):1292-4. PubMed ID: 19018107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization of Liganded Phosphatases in the HAD Superfamily.
    Harvey CM; O'Toole KH; Allen KN
    Methods Enzymol; 2018; 607():157-184. PubMed ID: 30149857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel structurally characterized haloacid dehalogenase superfamily phosphatase from Thermococcus thioreducens with diverse substrate specificity.
    Havlickova P; Brinsa V; Brynda J; Pachl P; Prudnikova T; Mesters JR; Kascakova B; Kuty M; Pusey ML; Ng JD; Rezacova P; Kuta Smatanova I
    Acta Crystallogr D Struct Biol; 2019 Aug; 75(Pt 8):743-752. PubMed ID: 31373573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The first structure of a bacterial class B Acid phosphatase reveals further structural heterogeneity among phosphatases of the haloacid dehalogenase fold.
    Calderone V; Forleo C; Benvenuti M; Cristina Thaller M; Rossolini GM; Mangani S
    J Mol Biol; 2004 Jan; 335(3):761-73. PubMed ID: 14687572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cap-domain closure enables diverse substrate recognition by the C2-type haloacid dehalogenase-like sugar phosphatase Plasmodium falciparum HAD1.
    Park J; Guggisberg AM; Odom AR; Tolia NH
    Acta Crystallogr D Biol Crystallogr; 2015 Sep; 71(Pt 9):1824-34. PubMed ID: 26327372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergence of structure and function in the haloacid dehalogenase enzyme superfamily: Bacteroides thetaiotaomicron BT2127 is an inorganic pyrophosphatase.
    Huang H; Patskovsky Y; Toro R; Farelli JD; Pandya C; Almo SC; Allen KN; Dunaway-Mariano D
    Biochemistry; 2011 Oct; 50(41):8937-49. PubMed ID: 21894910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of recombinant Haemophilus influenzae e (P4) acid phosphatase reveals a new member of the haloacid dehalogenase superfamily.
    Felts RL; Ou Z; Reilly TJ; Tanner JJ
    Biochemistry; 2007 Oct; 46(39):11110-9. PubMed ID: 17824671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.
    Kuznetsova E; Nocek B; Brown G; Makarova KS; Flick R; Wolf YI; Khusnutdinova A; Evdokimova E; Jin K; Tan K; Hanson AD; Hasnain G; Zallot R; de Crécy-Lagard V; Babu M; Savchenko A; Joachimiak A; Edwards AM; Koonin EV; Yakunin AF
    J Biol Chem; 2015 Jul; 290(30):18678-98. PubMed ID: 26071590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the structural determinants underlying discrimination between substrate and solvent in beta-phosphoglucomutase catalysis.
    Dai J; Finci L; Zhang C; Lahiri S; Zhang G; Peisach E; Allen KN; Dunaway-Mariano D
    Biochemistry; 2009 Mar; 48(9):1984-95. PubMed ID: 19154134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli YrbI is 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase.
    Wu J; Woodard RW
    J Biol Chem; 2003 May; 278(20):18117-23. PubMed ID: 12639950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronophin dimerization is required for proper positioning of its substrate specificity loop.
    Kestler C; Knobloch G; Tessmer I; Jeanclos E; Schindelin H; Gohla A
    J Biol Chem; 2014 Jan; 289(5):3094-103. PubMed ID: 24338687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.