These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 23848445)
1. Adsorption of proteins at physiological concentrations on pegylated surfaces and the compatibilizing role of adsorbed albumin with respect to other proteins according to optical waveguide lightmode spectroscopy (OWLS). Leclercq L; Modena E; Vert M J Biomater Sci Polym Ed; 2013; 24(13):1499-518. PubMed ID: 23848445 [TBL] [Abstract][Full Text] [Related]
2. Comparison between protein repulsions by diblock PLA-PEO and albumin nanocoatings using OWLS. Leclercq L; Vert M J Biomater Sci Polym Ed; 2017 Feb; 28(2):177-193. PubMed ID: 27875933 [TBL] [Abstract][Full Text] [Related]
3. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Dalsin JL; Lin L; Tosatti S; Vörös J; Textor M; Messersmith PB Langmuir; 2005 Jan; 21(2):640-6. PubMed ID: 15641834 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS): a pilot study using evanescent-field optical sensing under voltage control to monitor polycationic polymer adsorption onto indium tin oxide (ITO)-coated waveguide chips. Bearinger JP; Vörös J; Hubbell JA; Textor M Biotechnol Bioeng; 2003 May; 82(4):465-73. PubMed ID: 12632403 [TBL] [Abstract][Full Text] [Related]
5. The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide. Pei J; Hall H; Spencer ND Biomaterials; 2011 Dec; 32(34):8968-78. PubMed ID: 21872325 [TBL] [Abstract][Full Text] [Related]
6. Competitive adsorption of fibrinogen and albumin and blood platelet adhesion on surfaces modified with nanoparticles and/or PEO. Nonckreman CJ; Fleith S; Rouxhet PG; Dupont-Gillain CC Colloids Surf B Biointerfaces; 2010 Jun; 77(2):139-49. PubMed ID: 20171850 [TBL] [Abstract][Full Text] [Related]
7. Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility. Chung CW; Kim HW; Kim YB; Rhee YH Int J Biol Macromol; 2003 Mar; 32(1-2):17-22. PubMed ID: 12719127 [TBL] [Abstract][Full Text] [Related]
8. High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates. Blättler TM; Pasche S; Textor M; Griesser HJ Langmuir; 2006 Jun; 22(13):5760-9. PubMed ID: 16768506 [TBL] [Abstract][Full Text] [Related]
9. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane): synthesis, characterization, in vitro protein adsorption and platelet adhesion. Park JH; Bae YH Biomaterials; 2002 Apr; 23(8):1797-808. PubMed ID: 11950050 [TBL] [Abstract][Full Text] [Related]
10. Postadsorptive behavior of plasma proteins on poly(propylene oxide)-segmented nylon-610 surfaces and its implication in preventing contact-induced activation of platelets on these surfaces. Takei YG; Yui N; Okano T; Maruyama A; Sanui K; Sakurai Y; Ogata N J Biomater Sci Polym Ed; 1994; 6(2):149-68. PubMed ID: 7947481 [TBL] [Abstract][Full Text] [Related]
11. Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. Pasche S; Vörös J; Griesser HJ; Spencer ND; Textor M J Phys Chem B; 2005 Sep; 109(37):17545-52. PubMed ID: 16853244 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: adsorption kinetics, surface characterization, and nonfouling properties. Gillich T; Benetti EM; Rakhmatullina E; Konradi R; Li W; Zhang A; Schlüter AD; Textor M J Am Chem Soc; 2011 Jul; 133(28):10940-50. PubMed ID: 21634791 [TBL] [Abstract][Full Text] [Related]
13. Mass spectrometric mapping of fibrinogen conformations at poly(ethylene terephthalate) interfaces. Scott EA; Elbert DL Biomaterials; 2007 Sep; 28(27):3904-17. PubMed ID: 17582492 [TBL] [Abstract][Full Text] [Related]
14. Surface modification of PLGA microspheres. Müller M; Vörös J; Csúcs G; Walter E; Danuser G; Merkle HP; Spencer ND; Textor M J Biomed Mater Res A; 2003 Jul; 66(1):55-61. PubMed ID: 12833431 [TBL] [Abstract][Full Text] [Related]
15. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths. Lazos D; Franzka S; Ulbricht M Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of copolymers aggregates: from kinetics to adsorbed layer structure. Zdyrko B; Ofir PB; Alb AM; Reed WF; Santore MM J Colloid Interface Sci; 2008 Jun; 322(2):365-74. PubMed ID: 18436230 [TBL] [Abstract][Full Text] [Related]
17. Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Konradi R; Pidhatika B; Mühlebach A; Textor M Langmuir; 2008 Feb; 24(3):613-6. PubMed ID: 18179272 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of poly(ethylene glycol)-modified ribonuclease A to a poly(lactide-co-glycolide) surface. Daly SM; Przybycien TM; Tilton RD Biotechnol Bioeng; 2005 Jun; 90(7):856-68. PubMed ID: 15841471 [TBL] [Abstract][Full Text] [Related]
19. Chemiluminescence-based detection and comparison of protein amounts adsorbed on differently modified silica surfaces. Müller R; Hiller KA; Schmalz G; Ruhl S Anal Biochem; 2006 Dec; 359(2):194-202. PubMed ID: 17087913 [TBL] [Abstract][Full Text] [Related]
20. The investigation of protein adsorption behaviors on different functionalized polymers films. Zhang ZH; Feng CL Biotechnol J; 2007 Jun; 2(6):743-51. PubMed ID: 17492711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]