BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 23848445)

  • 1. Adsorption of proteins at physiological concentrations on pegylated surfaces and the compatibilizing role of adsorbed albumin with respect to other proteins according to optical waveguide lightmode spectroscopy (OWLS).
    Leclercq L; Modena E; Vert M
    J Biomater Sci Polym Ed; 2013; 24(13):1499-518. PubMed ID: 23848445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between protein repulsions by diblock PLA-PEO and albumin nanocoatings using OWLS.
    Leclercq L; Vert M
    J Biomater Sci Polym Ed; 2017 Feb; 28(2):177-193. PubMed ID: 27875933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA.
    Dalsin JL; Lin L; Tosatti S; Vörös J; Textor M; Messersmith PB
    Langmuir; 2005 Jan; 21(2):640-6. PubMed ID: 15641834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS): a pilot study using evanescent-field optical sensing under voltage control to monitor polycationic polymer adsorption onto indium tin oxide (ITO)-coated waveguide chips.
    Bearinger JP; Vörös J; Hubbell JA; Textor M
    Biotechnol Bioeng; 2003 May; 82(4):465-73. PubMed ID: 12632403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide.
    Pei J; Hall H; Spencer ND
    Biomaterials; 2011 Dec; 32(34):8968-78. PubMed ID: 21872325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive adsorption of fibrinogen and albumin and blood platelet adhesion on surfaces modified with nanoparticles and/or PEO.
    Nonckreman CJ; Fleith S; Rouxhet PG; Dupont-Gillain CC
    Colloids Surf B Biointerfaces; 2010 Jun; 77(2):139-49. PubMed ID: 20171850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility.
    Chung CW; Kim HW; Kim YB; Rhee YH
    Int J Biol Macromol; 2003 Mar; 32(1-2):17-22. PubMed ID: 12719127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates.
    Blättler TM; Pasche S; Textor M; Griesser HJ
    Langmuir; 2006 Jun; 22(13):5760-9. PubMed ID: 16768506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane): synthesis, characterization, in vitro protein adsorption and platelet adhesion.
    Park JH; Bae YH
    Biomaterials; 2002 Apr; 23(8):1797-808. PubMed ID: 11950050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postadsorptive behavior of plasma proteins on poly(propylene oxide)-segmented nylon-610 surfaces and its implication in preventing contact-induced activation of platelets on these surfaces.
    Takei YG; Yui N; Okano T; Maruyama A; Sanui K; Sakurai Y; Ogata N
    J Biomater Sci Polym Ed; 1994; 6(2):149-68. PubMed ID: 7947481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces.
    Pasche S; Vörös J; Griesser HJ; Spencer ND; Textor M
    J Phys Chem B; 2005 Sep; 109(37):17545-52. PubMed ID: 16853244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: adsorption kinetics, surface characterization, and nonfouling properties.
    Gillich T; Benetti EM; Rakhmatullina E; Konradi R; Li W; Zhang A; Schlüter AD; Textor M
    J Am Chem Soc; 2011 Jul; 133(28):10940-50. PubMed ID: 21634791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometric mapping of fibrinogen conformations at poly(ethylene terephthalate) interfaces.
    Scott EA; Elbert DL
    Biomaterials; 2007 Sep; 28(27):3904-17. PubMed ID: 17582492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of PLGA microspheres.
    Müller M; Vörös J; Csúcs G; Walter E; Danuser G; Merkle HP; Spencer ND; Textor M
    J Biomed Mater Res A; 2003 Jul; 66(1):55-61. PubMed ID: 12833431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of copolymers aggregates: from kinetics to adsorbed layer structure.
    Zdyrko B; Ofir PB; Alb AM; Reed WF; Santore MM
    J Colloid Interface Sci; 2008 Jun; 322(2):365-74. PubMed ID: 18436230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces.
    Konradi R; Pidhatika B; Mühlebach A; Textor M
    Langmuir; 2008 Feb; 24(3):613-6. PubMed ID: 18179272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of poly(ethylene glycol)-modified ribonuclease A to a poly(lactide-co-glycolide) surface.
    Daly SM; Przybycien TM; Tilton RD
    Biotechnol Bioeng; 2005 Jun; 90(7):856-68. PubMed ID: 15841471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiluminescence-based detection and comparison of protein amounts adsorbed on differently modified silica surfaces.
    Müller R; Hiller KA; Schmalz G; Ruhl S
    Anal Biochem; 2006 Dec; 359(2):194-202. PubMed ID: 17087913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The investigation of protein adsorption behaviors on different functionalized polymers films.
    Zhang ZH; Feng CL
    Biotechnol J; 2007 Jun; 2(6):743-51. PubMed ID: 17492711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.