BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23848563)

  • 1. Vascular smooth muscle cell phenotype is defined by Ca2+-dependent transcription factors.
    Kudryavtseva O; Aalkjaer C; Matchkov VV
    FEBS J; 2013 Nov; 280(21):5488-99. PubMed ID: 23848563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular Ca²⁺ signalling and phenotype of vascular smooth muscle cells.
    Matchkov VV; Kudryavtseva O; Aalkjaer C
    Basic Clin Pharmacol Toxicol; 2012 Jan; 110(1):42-8. PubMed ID: 21999706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Store-operated Ca2+ entry activates the CREB transcription factor in vascular smooth muscle.
    Pulver RA; Rose-Curtis P; Roe MW; Wellman GC; Lounsbury KM
    Circ Res; 2004 May; 94(10):1351-8. PubMed ID: 15073039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-type Ca2+ channels in vascular smooth muscle: multiple functions.
    Cribbs LL
    Cell Calcium; 2006 Aug; 40(2):221-30. PubMed ID: 16797699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular endothelial growth factor stimulates a novel calcium-signaling pathway in vascular smooth muscle cells.
    Chandra A; Angle N
    Surgery; 2005 Oct; 138(4):780-7. PubMed ID: 16269309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcineurin-GATA-6 pathway is involved in smooth muscle-specific transcription.
    Wada H; Hasegawa K; Morimoto T; Kakita T; Yanazume T; Abe M; Sasayama S
    J Cell Biol; 2002 Mar; 156(6):983-91. PubMed ID: 11889139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylinositol 3-kinase and calcium-activated transcription pathways are required for VLDL-induced smooth muscle cell proliferation.
    Lipskaia L; Pourci ML; Deloménie C; Combettes L; Goudounèche D; Paul JL; Capiod T; Lompré AM
    Circ Res; 2003 May; 92(10):1115-22. PubMed ID: 12730091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation-transcription coupling in arterial smooth muscle.
    Wamhoff BR; Bowles DK; Owens GK
    Circ Res; 2006 Apr; 98(7):868-78. PubMed ID: 16614312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes.
    Wang J; Yan CH; Li Y; Xu K; Tian XX; Peng CF; Tao J; Sun MY; Han YL
    Exp Cell Res; 2013 May; 319(8):1165-75. PubMed ID: 23518389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platelet-derived growth factor receptors expressed in response to injury of differentiated vascular smooth muscle in vitro: effects on Ca2+ and growth signals.
    Lindqvist A; Nilsson BO; Ekblad E; Hellstrand P
    Acta Physiol Scand; 2001 Oct; 173(2):175-84. PubMed ID: 11683675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.
    Matchkov VV
    Dan Med Bull; 2010 Oct; 57(10):B4191. PubMed ID: 21040688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca2+-calcineurin-NFAT signaling pathway.
    Guo X; Zhou C; Sun N
    Biochem Biophys Res Commun; 2011 Apr; 407(4):807-12. PubMed ID: 21443864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane depolarization mediates phosphorylation and nuclear translocation of CREB in vascular smooth muscle cells.
    Stevenson AS; Cartin L; Wellman TL; Dick MH; Nelson MT; Lounsbury KM
    Exp Cell Res; 2001 Feb; 263(1):118-30. PubMed ID: 11161711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-talking between calcium and histamine in the expression of MAPKs in hypertensive vascular smooth muscle cells.
    Edwards C; Armstrong P; Goode G; Mtshali C; Williams S; Myles EL; Washington B
    Cell Mol Biol (Noisy-le-grand); 2007 May; 53(4):61-6. PubMed ID: 17531162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulation of TRPM7 channels by angiotensin II triggers phenotypic switching of vascular smooth muscle cells of ascending aorta.
    Zhang Z; Wang M; Fan XH; Chen JH; Guan YY; Tang YB
    Circ Res; 2012 Oct; 111(9):1137-46. PubMed ID: 22896586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabotropic Ca2+ channel-induced calcium release in vascular smooth muscle.
    Ureña J; del Valle-Rodríguez A; López-Barneo J
    Cell Calcium; 2007; 42(4-5):513-20. PubMed ID: 17559931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bradykinin activates R-, T-, and L-type Ca2+ channels and induces a sustained increase of nuclear Ca2+ in aortic vascular smooth muscle cells.
    Bkaily G; Jaalouk D; Jacques D; Economos D; Hassan G; Simaan M; Regoli D; Pothier P
    Can J Physiol Pharmacol; 1997 Jun; 75(6):652-60. PubMed ID: 9276144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Ca2+]i reduction increases cellular proliferation and apoptosis in vascular smooth muscle cells: relevance to the ADPKD phenotype.
    Kip SN; Hunter LW; Ren Q; Harris PC; Somlo S; Torres VE; Sieck GC; Qian Q
    Circ Res; 2005 Apr; 96(8):873-80. PubMed ID: 15790956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Role of K(Ca)3.1 channel in proliferation and migration of rat vascular smooth muscle cells of the proliferative phenotype].
    Su X; Zhang H; Yu W; Huo J; Guo Y; Wang S; Wang X
    Nan Fang Yi Ke Da Xue Xue Bao; 2012 Jun; 32(7):976-80. PubMed ID: 22820581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the growth arrest and DNA damage-inducible gene 45 (GADD45) by peroxisome proliferator-activated receptor gamma in vascular smooth muscle cells.
    Bruemmer D; Yin F; Liu J; Berger JP; Sakai T; Blaschke F; Fleck E; Van Herle AJ; Forman BM; Law RE
    Circ Res; 2003 Aug; 93(4):e38-47. PubMed ID: 12881480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.