These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 23848609)
1. Systematic approach to engineer Escherichia coli pathways for co-utilization of a glucose-xylose mixture. Chiang CJ; Lee HM; Guo HJ; Wang ZW; Lin LJ; Chao YP J Agric Food Chem; 2013 Aug; 61(31):7583-90. PubMed ID: 23848609 [TBL] [Abstract][Full Text] [Related]
2. Adaptation on xylose improves glucose-xylose co-utilization and ethanol production in a carbon catabolite repression (CCR) compromised ethanologenic strain. Dev C; Jilani SB; Yazdani SS Microb Cell Fact; 2022 Aug; 21(1):154. PubMed ID: 35933385 [TBL] [Abstract][Full Text] [Related]
3. Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars. Kim J; Tremaine M; Grass JA; Purdy HM; Landick R; Kiley PJ; Reed JL Biotechnol J; 2019 Sep; 14(9):e1800441. PubMed ID: 31297978 [TBL] [Abstract][Full Text] [Related]
4. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21. Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous glucose and xylose utilization by an Kaplan NA; Islam KN; Kanis FC; Verderber JR; Wang X; Jones JA; Koffas MAG Appl Environ Microbiol; 2024 Feb; 90(2):e0216923. PubMed ID: 38289128 [TBL] [Abstract][Full Text] [Related]
6. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture. Jilani SB; Dev C; Eqbal D; Jawed K; Prasad R; Yazdani SS Microb Cell Fact; 2020 Jul; 19(1):153. PubMed ID: 32723338 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Kim SM; Choi BY; Ryu YS; Jung SH; Park JM; Kim GH; Lee SK Metab Eng; 2015 Jul; 30():141-148. PubMed ID: 26045332 [TBL] [Abstract][Full Text] [Related]
8. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Dunn KL; Rao CV Appl Microbiol Biotechnol; 2014 Aug; 98(15):6897-905. PubMed ID: 24839214 [TBL] [Abstract][Full Text] [Related]
9. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268 [TBL] [Abstract][Full Text] [Related]
10. Increasing reducing power output (NADH) of glucose catabolism for reduction of xylose to xylitol by genetically engineered Escherichia coli AI05. Iverson A; Garza E; Zhao J; Wang Y; Zhao X; Wang J; Manow R; Zhou S World J Microbiol Biotechnol; 2013 Jul; 29(7):1225-32. PubMed ID: 23435875 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate. Fujiwara R; Noda S; Tanaka T; Kondo A Nat Commun; 2020 Jan; 11(1):279. PubMed ID: 31937786 [TBL] [Abstract][Full Text] [Related]
12. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium. Khunnonkwao P; Jantama SS; Kanchanatawee S; Jantama K Appl Microbiol Biotechnol; 2018 Jan; 102(1):127-141. PubMed ID: 29079860 [TBL] [Abstract][Full Text] [Related]
13. Synergistic co-utilization of biomass-derived sugars enhances aromatic amino acid production by engineered Escherichia coli. Liu A; Machas M; Mhatre A; Hajinajaf N; Sarnaik A; Nichols N; Frazer S; Wang X; Varman AM; Nielsen DR Biotechnol Bioeng; 2024 Feb; 121(2):784-794. PubMed ID: 37926950 [TBL] [Abstract][Full Text] [Related]
14. Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures. Guo Q; Ullah I; Zheng LJ; Gao XQ; Liu CY; Zheng HD; Fan LH; Deng L Biotechnol Bioeng; 2022 Feb; 119(2):388-398. PubMed ID: 34837379 [TBL] [Abstract][Full Text] [Related]
15. Modulation of endogenous pathways enhances bioethanol yield and productivity in Escherichia coli. Munjal N; Mattam AJ; Pramanik D; Srivastava PS; Yazdani SS Microb Cell Fact; 2012 Nov; 11():145. PubMed ID: 23122330 [TBL] [Abstract][Full Text] [Related]
16. Genetic engineering of Zymobacter palmae for production of ethanol from xylose. Yanase H; Sato D; Yamamoto K; Matsuda S; Yamamoto S; Okamoto K Appl Environ Microbiol; 2007 Apr; 73(8):2592-9. PubMed ID: 17308178 [TBL] [Abstract][Full Text] [Related]
17. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production. Wang X; Goh EB; Beller HR Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483 [TBL] [Abstract][Full Text] [Related]
18. Comparison of glucose/xylose co-fermentation by recombinant Zymomonas mobilis under different genetic and environmental conditions. Ma Y; Dong H; Zou S; Hong J; Zhang M Biotechnol Lett; 2012 Jul; 34(7):1297-304. PubMed ID: 22421973 [TBL] [Abstract][Full Text] [Related]
19. Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis. Lawford HG; Rousseau JD Appl Biochem Biotechnol; 1991; 28-29():221-36. PubMed ID: 1929364 [TBL] [Abstract][Full Text] [Related]
20. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]