BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23848609)

  • 21. An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli.
    Ren C; Chen T; Zhang J; Liang L; Lin Z
    Microb Cell Fact; 2009 Dec; 8():66. PubMed ID: 20003468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthetic Consortium of Escherichia coli for n-Butanol Production by Fermentation of the Glucose-Xylose Mixture.
    Saini M; Lin LJ; Chiang CJ; Chao YP
    J Agric Food Chem; 2017 Nov; 65(46):10040-10047. PubMed ID: 29076337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose.
    Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Evaluation on glucose-xylose co-fermentation by a recombinant Zymomonas mobilis strain].
    Feng Q; Li S; Wang L; Li T
    Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):37-47. PubMed ID: 22667107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.
    Hanly TJ; Henson MA
    Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5.
    Saha B; Cotta MA
    Bioengineered; 2012; 3(4):197-202. PubMed ID: 22705843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose.
    Hou J; Qiu C; Shen Y; Li H; Bao X
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel approach to engineer strains for simultaneous sugar utilization.
    Gawand P; Hyland P; Ekins A; Martin VJ; Mahadevan R
    Metab Eng; 2013 Nov; 20():63-72. PubMed ID: 23988492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-Fermentation of Glucose-Xylose Mixtures from Agroindustrial Residues by Ethanologenic
    Sierra-Ibarra E; Vargas-Tah A; Moss-Acosta CL; Trujillo-Martínez B; Molina-Vázquez ER; Rosas-Aburto A; Valdivia-López Á; Hernández-Luna MG; Vivaldo-Lima E; Martínez A
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xylose-glucose co-fermentation to ethanol by Escherichia coli strain MS04 using single- and two-stage continuous cultures under micro-aerated conditions.
    Fernández-Sandoval MT; Galíndez-Mayer J; Bolívar F; Gosset G; Ramírez OT; Martinez A
    Microb Cell Fact; 2019 Aug; 18(1):145. PubMed ID: 31443652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relative rates of sugar utilization by an ethanologenic recombinant Escherichia coli using mixtures of glucose, mannose, and xylose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1994; 45-46():367-81. PubMed ID: 8010766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose.
    Fu H; Yu L; Lin M; Wang J; Xiu Z; Yang ST
    Metab Eng; 2017 Mar; 40():50-58. PubMed ID: 28040464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering a Synthetic, Catabolically Orthogonal Coculture System for Enhanced Conversion of Lignocellulose-Derived Sugars to Ethanol.
    Flores AD; Ayla EZ; Nielsen DR; Wang X
    ACS Synth Biol; 2019 May; 8(5):1089-1099. PubMed ID: 30979337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ethanol production from glucose and xylose by immobilized Zymomonas mobilis CP4(pZB5).
    Krishnan MS; Blanco M; Shattuck CK; Nghiem NP; Davison BH
    Appl Biochem Biotechnol; 2000; 84-86():525-41. PubMed ID: 10849817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect.
    Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S
    BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiplex growth rate phenotyping of synthetic mutants in selection to engineer glucose and xylose co-utilization in Escherichia coli.
    Groot J; Cepress-Mclean SC; Robbins-Pianka A; Knight R; Gill RT
    Biotechnol Bioeng; 2017 Apr; 114(4):885-893. PubMed ID: 27861733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose.
    Vinuselvi P; Lee SK
    Enzyme Microb Technol; 2012 Jan; 50(1):1-4. PubMed ID: 22133432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli.
    Alterthum F; Ingram LO
    Appl Environ Microbiol; 1989 Aug; 55(8):1943-8. PubMed ID: 2675762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes.
    Kim Y; Ingram LO; Shanmugam KT
    Appl Environ Microbiol; 2007 Mar; 73(6):1766-71. PubMed ID: 17259366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.