These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23848676)

  • 1. Analytical model of batch magnetophoretic separation.
    Kashevsky SB; Kashevsky BE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062308. PubMed ID: 23848676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetophoresis of particles and aggregates in concentrated magnetic fluids.
    Pshenichnikov AF; Ivanov AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051401. PubMed ID: 23214778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient.
    Andreu JS; Camacho J; Faraudo J; Benelmekki M; Rebollo C; Martínez LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021402. PubMed ID: 21928989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells.
    Forbes TP; Forry SP
    Lab Chip; 2012 Apr; 12(8):1471-9. PubMed ID: 22395226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer.
    Jäger S; Stark H; Klapp SH
    J Phys Condens Matter; 2013 May; 25(19):195104. PubMed ID: 23587804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-the-fly coarse-graining methodology for the simulation of chain formation of superparamagnetic colloids in strong magnetic fields.
    Andreu JS; Calero C; Camacho J; Faraudo J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036709. PubMed ID: 22587211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of micro and sub-micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis.
    Xue CD; Sun ZP; Li YJ; Chen JF; Liu B; Qin KR
    Electrophoresis; 2020 Jun; 41(10-11):909-916. PubMed ID: 32145034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms.
    Cao Q; Han X; Li L
    Lab Chip; 2014 Aug; 14(15):2762-77. PubMed ID: 24903572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase coexistence for charged soft dumbbell and ionic soft sphere systems via molecular dynamics simulation.
    Braun H; Hentschke R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012311. PubMed ID: 23410335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates.
    Pamme N; Manz A
    Anal Chem; 2004 Dec; 76(24):7250-6. PubMed ID: 15595866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry breaking in a few-body system with magnetocapillary interactions.
    Vandewalle N; Clermont L; Terwagne D; Dorbolo S; Mersch E; Lumay G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041402. PubMed ID: 22680470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haloing in bimodal magnetic colloids: the role of field-induced phase separation.
    Magnet C; Kuzhir P; Bossis G; Meunier A; Suloeva L; Zubarev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011404. PubMed ID: 23005414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous separation of colloidal particles using dielectrophoresis.
    Yunus NA; Nili H; Green NG
    Electrophoresis; 2013 Apr; 34(7):969-78. PubMed ID: 23436439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of acoustic radiation forces to position particles within fluid droplets.
    Oberti S; Neild A; Quach R; Dual J
    Ultrasonics; 2009 Jan; 49(1):47-52. PubMed ID: 18590923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields.
    Magnet C; Kuzhir P; Bossis G; Meunier A; Nave S; Zubarev A; Lomenech C; Bashtovoi V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032310. PubMed ID: 24730845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unconventional dynamic hysteresis in a periodic assembly of paramagnetic colloids.
    Tierno P; Johansen TH; Sancho JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062301. PubMed ID: 23848669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorting mesoscopic objects with periodic potential landscapes: optical fractionation.
    Ladavac K; Kasza K; Grier DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):010901. PubMed ID: 15324034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinning Janus doublets driven in uniform ac electric fields.
    Boymelgreen A; Yossifon G; Park S; Miloh T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):011003. PubMed ID: 24580163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectrophoresis of nanocolloids: a molecular dynamics study.
    Salonen E; Terama E; Vattulainen I; Karttunen M
    Eur Phys J E Soft Matter; 2005 Oct; 18(2):133-42. PubMed ID: 16195818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium condensation and coarsening of field-driven dipolar colloids.
    Jäger S; Schmidle H; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011402. PubMed ID: 23005412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.