These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23848729)

  • 1. Topological properties of a time-integrated activity-driven network.
    Starnini M; Pastor-Satorras R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062807. PubMed ID: 23848729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal percolation in activity-driven networks.
    Starnini M; Pastor-Satorras R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032807. PubMed ID: 24730899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging and percolation dynamics in a Non-Poissonian temporal network model.
    Moinet A; Starnini M; Pastor-Satorras R
    Phys Rev E; 2016 Aug; 94(2-1):022316. PubMed ID: 27627326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percolation and Topological Properties of Temporal Higher-Order Networks.
    Di Gaetano L; Battiston F; Starnini M
    Phys Rev Lett; 2024 Jan; 132(3):037401. PubMed ID: 38307051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burstiness and aging in social temporal networks.
    Moinet A; Starnini M; Pastor-Satorras R
    Phys Rev Lett; 2015 Mar; 114(10):108701. PubMed ID: 25815972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hidden variables in bipartite networks.
    Kitsak M; Krioukov D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026114. PubMed ID: 21929071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Class of correlated random networks with hidden variables.
    Boguñá M; Pastor-Satorras R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036112. PubMed ID: 14524837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mean field theory for biology inspired duplication-divergence network model.
    Cai S; Liu Z; Lee HC
    Chaos; 2015 Aug; 25(8):083106. PubMed ID: 26328557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitness-dependent topological properties of the world trade web.
    Garlaschelli D; Loffredo MI
    Phys Rev Lett; 2004 Oct; 93(18):188701. PubMed ID: 15525215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies.
    Rudolph M; Destexhe A
    Neural Comput; 2006 Sep; 18(9):2146-210. PubMed ID: 16846390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate equation approach for correlations in growing network models.
    Barrat A; Pastor-Satorras R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036127. PubMed ID: 15903513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect.
    Zhang Z; Zhou S; Xie W; Chen L; Lin Y; Guan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061113. PubMed ID: 19658479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Information content based model for the topological properties of the gene regulatory network of Escherichia coli.
    Malkoç B; Balcan D; Erzan A
    J Theor Biol; 2010 Apr; 263(3):281-94. PubMed ID: 19962388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of topological structure on complex networks.
    Nakamura I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):045104. PubMed ID: 14682990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion-annihilation processes in complex networks.
    Catanzaro M; Boguñá M; Pastor-Satorras R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056104. PubMed ID: 16089599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Content-based networks: a pedagogical overview.
    Balcan D; Erzan A
    Chaos; 2007 Jun; 17(2):026108. PubMed ID: 17614695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Griffiths effects of the susceptible-infected-susceptible epidemic model on random power-law networks.
    Cota W; Ferreira SC; Ódor G
    Phys Rev E; 2016 Mar; 93(3):032322. PubMed ID: 27078381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of shells in complex networks.
    Shao J; Buldyrev SV; Braunstein LA; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036105. PubMed ID: 19905178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On a growth model for complex networks capable of producing power-law out-degree distributions with wide range exponents.
    Esquivel-Gómez J; Arjona-Villicaña PD; Stevens-Navarro E; Pineda-Rico U; Balderas-Navarro RE; Acosta-Elias J
    Sci Rep; 2015 Mar; 5():9067. PubMed ID: 25765763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.