These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23848748)
1. Chiralities of spiral waves and their transitions. Pan JT; Cai MC; Li BW; Zhang H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062907. PubMed ID: 23848748 [TBL] [Abstract][Full Text] [Related]
2. Chirality effect on the global structure of spiral-domain patterns in the two-dimensional complex Ginzburg-Landau equation. Zhan M; Luo J; Gao J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016214. PubMed ID: 17358242 [TBL] [Abstract][Full Text] [Related]
3. Interaction and breakup of inwardly rotating spiral waves in an inhomogeneous oscillatory medium. Xie F; Weiss JN Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016107. PubMed ID: 17358224 [TBL] [Abstract][Full Text] [Related]
4. Inwardly rotating spirals in nonuniform excitable media. Gao X; Feng X; Cai MC; Li BW; Ying HP; Zhang H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016213. PubMed ID: 22400649 [TBL] [Abstract][Full Text] [Related]
5. Interaction of spiral waves in the complex Ginzburg-Landau equation. Aguareles M; Chapman SJ; Witelski T Phys Rev Lett; 2008 Nov; 101(22):224101. PubMed ID: 19113484 [TBL] [Abstract][Full Text] [Related]
6. Transition from spiral waves to defect-mediated turbulence induced by gradient effects in a reaction-diffusion system. Zhang C; Zhang H; Ouyang Q; Hu B; Gunaratne GH Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036202. PubMed ID: 14524863 [TBL] [Abstract][Full Text] [Related]
7. Nucleation of spatiotemporal structures from defect turbulence in the two-dimensional complex Ginzburg-Landau equation. Liu W; Täuber UC Phys Rev E; 2019 Nov; 100(5-1):052210. PubMed ID: 31869992 [TBL] [Abstract][Full Text] [Related]
8. Analytical approach to the drift of the tips of spiral waves in the complex Ginzburg-Landau equation. Zhang S; Hu B; Zhang H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016214. PubMed ID: 12636592 [TBL] [Abstract][Full Text] [Related]
9. Controlling spatiotemporal chaos using multiple delays. Ahlborn A; Parlitz U Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):065202. PubMed ID: 17677313 [TBL] [Abstract][Full Text] [Related]
10. Lattice Boltzmann model for the complex Ginzburg-Landau equation. Zhang J; Yan G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066705. PubMed ID: 20866542 [TBL] [Abstract][Full Text] [Related]
11. Propagation of spiral waves pinned to circular and rectangular obstacles. Sutthiopad M; Luengviriya J; Porjai P; Phantu M; Kanchanawarin J; Müller SC; Luengviriya C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052912. PubMed ID: 26066234 [TBL] [Abstract][Full Text] [Related]
12. Front reversals, wave traps, and twisted spirals in periodically forced oscillatory media. Rudzick O; Mikhailov AS Phys Rev Lett; 2006 Jan; 96(1):018302. PubMed ID: 16486527 [TBL] [Abstract][Full Text] [Related]
14. Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli. Gray RA Chaos; 2002 Sep; 12(3):941-951. PubMed ID: 12779618 [TBL] [Abstract][Full Text] [Related]
15. Kinematics of spiral waves under feedback-related spatial gradients. Wu N; Gao H; Ying H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066206. PubMed ID: 21230722 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of spiral waves under phase feedback control in a Belousov-Zhabotinsky reaction. Tung CK; Chan CK Phys Rev Lett; 2002 Dec; 89(24):248302. PubMed ID: 12484985 [TBL] [Abstract][Full Text] [Related]
17. Excitation of spirals and chiral symmetry breaking in rayleigh-benard convection. Ecke RE; Hu Y; Mainieri R; Ahlers G Science; 1995 Sep; 269(5231):1704-7. PubMed ID: 17821641 [TBL] [Abstract][Full Text] [Related]
18. Predicting spiral wave patterns from cell properties in a model of biological self-organization. Geberth D; Hütt MT Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031917. PubMed ID: 18851075 [TBL] [Abstract][Full Text] [Related]
19. Extremize Optical Chiralities through Polarization Singularities. Chen W; Yang Q; Chen Y; Liu W Phys Rev Lett; 2021 Jun; 126(25):253901. PubMed ID: 34241501 [TBL] [Abstract][Full Text] [Related]
20. Reflection and attachment of spirals at obstacles for the Fitzhugh-Nagumo and Beeler-Reuter models. Olmos D Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041924. PubMed ID: 20481770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]