These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 23848760)

  • 1. Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum.
    Starosvetsky Y; Ben-Meir Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062919. PubMed ID: 23848760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics.
    Kosevich YA; Manevitch LI; Savin AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046603. PubMed ID: 18517746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consecutive transitions from localized to delocalized transport states in the anharmonic chain of three coupled oscillators.
    Kislovsky V; Kovaleva M; Jayaprakash KR; Starosvetsky Y
    Chaos; 2016 Jul; 26(7):073102. PubMed ID: 27475062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonstationary regimes in a Duffing oscillator subject to biharmonic forcing near a primary resonance.
    Starosvetsky Y; Manevitch LI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046211. PubMed ID: 21599274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Travelling breathers and solitary waves in strongly nonlinear lattices.
    James G
    Philos Trans A Math Phys Eng Sci; 2018 Aug; 376(2127):. PubMed ID: 30037936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhomogeneous stationary and oscillatory regimes in coupled chaotic oscillators.
    Liu W; Volkov E; Xiao J; Zou W; Zhan M; Yang J
    Chaos; 2012 Sep; 22(3):033144. PubMed ID: 23020483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical mechanics of general discrete nonlinear Schrödinger models: localization transition and its relevance for Klein-Gordon lattices.
    Johansson M; Rasmussen KØ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066610. PubMed ID: 15697529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating oscillatory fronts in a nonlinear sonic vacuum with strong nonlocal effects.
    Gendelman OV; Zolotarevskiy V; Savin AV; Bergman LA; Vakakis AF
    Phys Rev E; 2016 Mar; 93(3):032216. PubMed ID: 27078353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooling nonlinear lattices toward energy localization.
    Piazza F; Lepri S; Livi R
    Chaos; 2003 Jun; 13(2):637-45. PubMed ID: 12777128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destabilization patterns in chains of coupled oscillators.
    Yanchuk S; Wolfrum M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026212. PubMed ID: 18352108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fano resonances with discrete breathers.
    Flach S; Miroshnichenko AE; Fleurov V; Fistul MV
    Phys Rev Lett; 2003 Feb; 90(8):084101. PubMed ID: 12633430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonstationary dynamics of the sine lattice consisting of three pendula (trimer).
    Kovaleva M; Smirnov V; Manevitch L
    Phys Rev E; 2019 Jan; 99(1-1):012209. PubMed ID: 30780202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breather arrest, localization, and acoustic non-reciprocity in dissipative nonlinear lattices.
    Mojahed A; Gendelman OV; Vakakis AF
    J Acoust Soc Am; 2019 Jul; 146(1):826. PubMed ID: 31370643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains.
    Manevitch LI; Smirnov VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036602. PubMed ID: 21230198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators.
    Peil M; Jacquot M; Chembo YK; Larger L; Erneux T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026208. PubMed ID: 19391821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations.
    Halloy J; Sonnino G; Coullet P
    Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter mismatches and oscillation death in coupled oscillators.
    Koseska A; Volkov E; Kurths J
    Chaos; 2010 Jun; 20(2):023132. PubMed ID: 20590328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical turbulence and standing waves in a surface reaction model: The influence of global coupling and wave instabilities.
    Bar M; Hildebrand M; Eiswirth M; Falcke M; Engel H; Neufeld M
    Chaos; 1994 Sep; 4(3):499-508. PubMed ID: 12780126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance energy transport and exchange in oscillator arrays.
    Kovaleva A; Manevitch LI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022904. PubMed ID: 24032898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.