BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23848925)

  • 1. Confinement stabilizes a bacterial suspension into a spiral vortex.
    Wioland H; Woodhouse FG; Dunkel J; Kessler JO; Goldstein RE
    Phys Rev Lett; 2013 Jun; 110(26):268102. PubMed ID: 23848925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid flows created by swimming bacteria drive self-organization in confined suspensions.
    Lushi E; Wioland H; Goldstein RE
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9733-8. PubMed ID: 24958878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid dynamics of bacterial turbulence.
    Dunkel J; Heidenreich S; Drescher K; Wensink HH; Bär M; Goldstein RE
    Phys Rev Lett; 2013 May; 110(22):228102. PubMed ID: 23767750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport powered by bacterial turbulence.
    Kaiser A; Peshkov A; Sokolov A; ten Hagen B; Löwen H; Aranson IS
    Phys Rev Lett; 2014 Apr; 112(15):158101. PubMed ID: 24785075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical properties of collective motion in suspensions of bacteria.
    Sokolov A; Aranson IS
    Phys Rev Lett; 2012 Dec; 109(24):248109. PubMed ID: 23368392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective viscosity of dilute bacterial suspensions: a two-dimensional model.
    Haines BM; Aronson IS; Berlyand L; Karpeev DA
    Phys Biol; 2008 Nov; 5(4):046003. PubMed ID: 19029599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise.
    Ryan SD; Haines BM; Berlyand L; Ziebert F; Aranson IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):050904. PubMed ID: 21728480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meso-scale turbulence in living fluids.
    Wensink HH; Dunkel J; Heidenreich S; Drescher K; Goldstein RE; Löwen H; Yeomans JM
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14308-13. PubMed ID: 22908244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of bacterial locomotion at an obstacle.
    Cisneros L; Dombrowski C; Goldstein RE; Kessler JO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):030901. PubMed ID: 16605492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermittent turbulence in flowing bacterial suspensions.
    Secchi E; Rusconi R; Buzzaccaro S; Salek MM; Smriga S; Piazza R; Stocker R
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27307513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial swimming and oxygen transport near contact lines.
    Tuval I; Cisneros L; Dombrowski C; Wolgemuth CW; Kessler JO; Goldstein RE
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2277-82. PubMed ID: 15699341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circularly confined microswimmers exhibit multiple global patterns.
    Tsang AC; Kanso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043008. PubMed ID: 25974581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge current and pairing order transition in chiral bacterial vortices.
    Beppu K; Izri Z; Sato T; Yamanishi Y; Sumino Y; Maeda YT
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34561308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of viscosity in suspension of swimming bacteria.
    Sokolov A; Aranson IS
    Phys Rev Lett; 2009 Oct; 103(14):148101. PubMed ID: 19905604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of swimming bacteria: transition to directional order at high concentration.
    Cisneros LH; Kessler JO; Ganguly S; Goldstein RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061907. PubMed ID: 21797403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.
    Cui Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031911. PubMed ID: 21517529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instability of expanding bacterial droplets.
    Sokolov A; Rubio LD; Brady JF; Aranson IS
    Nat Commun; 2018 Apr; 9(1):1322. PubMed ID: 29615618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration dependence of the collective dynamics of swimming bacteria.
    Sokolov A; Aranson IS; Kessler JO; Goldstein RE
    Phys Rev Lett; 2007 Apr; 98(15):158102. PubMed ID: 17501387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective chemotactic dynamics in the presence of self-generated fluid flows.
    Lushi E; Goldstein RE; Shelley MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):040902. PubMed ID: 23214522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering bacterial vortex lattice via direct laser lithography.
    Nishiguchi D; Aranson IS; Snezhko A; Sokolov A
    Nat Commun; 2018 Oct; 9(1):4486. PubMed ID: 30367049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.