These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23849226)

  • 21. Effects of heating rate and dose on trapping parameters of TLD-100 crystals.
    Caprile PF; Sánchez-Nieto B; Pino AM; Delgado JF
    Health Phys; 2013 Feb; 104(2):218-23. PubMed ID: 23274825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterisation of BaSo4:Eu thermoluminescence phosphor.
    Annalakshmi O; Jose MT; Madhusoodanan U
    Radiat Prot Dosimetry; 2012 Jun; 150(2):127-33. PubMed ID: 22223718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermoluminescence glow curve deconvolution and kinetic parameter determination of samarium-doped lithium borosilicate glass.
    Abdelmonem A; Alazab HA; Salama E
    Luminescence; 2022 Feb; 37(2):302-309. PubMed ID: 34856644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and beta particle excited thermoluminescence of BaSiF
    Souadi G; Akca-Ozalp S; Ekdal Karali E; Kaynar UH; Ayvacikli M; Topaksu M; Can N
    Appl Radiat Isot; 2022 Mar; 181():110075. PubMed ID: 34953319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermoluminescence glow curve analysis of natural onyx from Turkey.
    Dogan T; Toktamış H; Yüksel M; Topaksu M; Necmeddin Yazici A
    Appl Radiat Isot; 2015 Feb; 96():13-19. PubMed ID: 25474767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental investigation of the 100 keV X-ray dose response of the high-temperature thermoluminescence in LiF:Mg,Ti (TLD-100): theoretical interpretation using the unified interaction model.
    Livingstone J; Horowitz YS; Oster L; Datz H; Lerch M; Rosenfeld A; Horowitz A
    Radiat Prot Dosimetry; 2010 Mar; 138(4):320-33. PubMed ID: 19934115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermally stimulated luminescence glow curve structure of β-irradiated CaB4O7:Dy.
    Akın A; Ekdal E; Arslanlar YT; Ayvacıklı M; Karalı T; Can N
    Luminescence; 2015 Sep; 30(6):830-4. PubMed ID: 25428760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The analysis of thermoluminescent glow peaks of natural calcite after beta irradiation.
    Yildirim RG; Kafadar VE; Yazici AN; Gün E
    Radiat Prot Dosimetry; 2012 Sep; 151(3):397-402. PubMed ID: 22355170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermoluminescent studies of GdAlO
    Nolasco-Altamirano D; Barrera-Angeles AA; Lemus-Ruiz J; Ugalde-Valdes MA; Alonso-Sotolongo A; Gutiérrez-Marquez JG; Alvarez-Romero R; Zarate-Medina J; Rivera-Montalvo T
    Appl Radiat Isot; 2022 Aug; 186():110268. PubMed ID: 35550227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of Thermoluminescence Kinetic Parameters of La
    Bakr M; Omer M
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32110876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermoluminescence of single wall carbon nanotubes synthesized by hydrogen-arc-discharge method.
    Ortiz-Morales A; Ortiz-López J; Leal-Acevedo B; Gómez-Aguilar R
    Appl Radiat Isot; 2019 Mar; 145():32-38. PubMed ID: 30579130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Thermoluminescence Glow Curves using Derivatives of different Orders.
    Karmakar M; Bhattacharyya S; Sarkar A; Mazumdar PS; Singh SD
    Radiat Prot Dosimetry; 2017 Aug; 175(4):493-502. PubMed ID: 28096312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermoluminescence study of pellets prepared using NaCl from Khewra Salt Mines in Pakistan.
    Ahmad K; Kakakhel MB; Hayat S; Wazir-Ud-Din M; Mahmood MM; Ur Rehman S; Siddique MT; Mirza SM
    Radiat Environ Biophys; 2021 May; 60(2):365-375. PubMed ID: 33611608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fit of second order thermoluminescence glow peaks using the logistic distribution function.
    Pagonis V; Kitis G
    Radiat Prot Dosimetry; 2001; 95(3):225-9. PubMed ID: 11605796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermoluminescence properties of gamma-irradiated nano-structure hydroxyapatite.
    Shafaei M; Ziaie F; Sardari D; Larijani MM
    Luminescence; 2016 Feb; 31(1):223-8. PubMed ID: 26015169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of thermoluminescence kinetic parameters of beta irradiated B doped Ca
    Depci T; Oglakci M; Sezer S; Yücel A; Dogan T; Souadi G; Topaksu M; Can N
    Appl Radiat Isot; 2021 Jul; 173():109738. PubMed ID: 33910130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermoluminescence properties and kinetic parameters of β-irradiated Turkish slate stone.
    Portakal-Uçar ZG
    Appl Radiat Isot; 2022 Feb; 180():110062. PubMed ID: 34902773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and dosimetry features of novel sensitive thermoluminescent phosphor of LiF doped with Mg and Dy impurities.
    Sadeghi E; Zahedifar M; Shoushtari MK
    Appl Radiat Isot; 2018 Jun; 136():111-117. PubMed ID: 29494943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermoluminescence studies of Nd doped Bi4Ge3O12 crystals irradiated by UV and beta sources.
    Karabulut Y; Canimoglu A; Ekdal E; Ayvacikli M; Can N; Karali T
    Appl Radiat Isot; 2016 Jul; 113():18-21. PubMed ID: 27108070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of β-Ca
    Roman-Lopez J; Lozano IB; Cruz-Zaragoza E; Castañeda JIG; Díaz-Góngora JAI
    Appl Radiat Isot; 2017 Jun; 124():44-48. PubMed ID: 28324825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.