These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
513 related articles for article (PubMed ID: 23849655)
1. A big data approach to the ultra-fast prediction of DFT-calculated bond energies. Qu X; Latino DA; Aires-de-Sousa J J Cheminform; 2013; 5():34. PubMed ID: 23849655 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning to Predict Homolytic Dissociation Energies of C-H Bonds: Calibration of DFT-based Models with Experimental Data. Li W; Luan Y; Zhang Q; Aires-de-Sousa J Mol Inform; 2023 Jan; 42(1):e2200193. PubMed ID: 36167940 [TBL] [Abstract][Full Text] [Related]
3. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies. Li HZ; Hu LH; Tao W; Gao T; Li H; Lu YH; Su ZM Int J Mol Sci; 2012; 13(7):8051-8070. PubMed ID: 22942689 [TBL] [Abstract][Full Text] [Related]
4. The Bond Dissociation Energy of the N-O Bond. Bach RD; Schlegel HB J Phys Chem A; 2021 Jun; 125(23):5014-5021. PubMed ID: 34086470 [TBL] [Abstract][Full Text] [Related]
5. Thermochemistry, bond energies, and internal rotor potentials of dimethyl tetraoxide. da Silva G; Bozzelli JW J Phys Chem A; 2007 Nov; 111(47):12026-36. PubMed ID: 17983209 [TBL] [Abstract][Full Text] [Related]
6. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies. Feng Y; Liu L; Wang JT; Huang H; Guo QX J Chem Inf Comput Sci; 2003; 43(6):2005-13. PubMed ID: 14632451 [TBL] [Abstract][Full Text] [Related]
7. Antioxidant potential of glutathione: a theoretical study. Fiser B; Szori M; Jójárt B; Izsák R; Csizmadia IG; Viskolcz B J Phys Chem B; 2011 Sep; 115(38):11269-77. PubMed ID: 21853966 [TBL] [Abstract][Full Text] [Related]
8. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. St John PC; Guan Y; Kim Y; Kim S; Paton RS Nat Commun; 2020 May; 11(1):2328. PubMed ID: 32393773 [TBL] [Abstract][Full Text] [Related]
9. Bond dissociation energies of ethyl valerate and tripropionin. Mukeba CT; Isamura BK; Mudogo V; Katshiatshia HM; Muya JT J Mol Model; 2023 Jul; 29(8):261. PubMed ID: 37482544 [TBL] [Abstract][Full Text] [Related]
11. Calculating bond dissociation energies of X-H (X=C, N, O, S) bonds of aromatic systems via density functional theory: a detailed comparison of methods. Trung NQ; Mechler A; Hoa NT; Vo QV R Soc Open Sci; 2022 Jun; 9(6):220177. PubMed ID: 35706655 [TBL] [Abstract][Full Text] [Related]
12. A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases. Gao T; Li H; Li W; Li L; Fang C; Li H; Hu L; Lu Y; Su ZM J Cheminform; 2016; 8():24. PubMed ID: 27148408 [TBL] [Abstract][Full Text] [Related]
13. Reaction of phenols with the 2,2-diphenyl-1-picrylhydrazyl radical. Kinetics and DFT calculations applied to determine ArO-H bond dissociation enthalpies and reaction mechanism. Foti MC; Daquino C; Mackie ID; DiLabio GA; Ingold KU J Org Chem; 2008 Dec; 73(23):9270-82. PubMed ID: 18991378 [TBL] [Abstract][Full Text] [Related]
14. The Cobalt-Methyl Bond Dissociation in Methylcobalamin: New Benchmark Analysis Based on Density Functional Theory and Completely Renormalized Coupled-Cluster Calculations. Kozlowski PM; Kumar M; Piecuch P; Li W; Bauman NP; Hansen JA; Lodowski P; Jaworska M J Chem Theory Comput; 2012 Jun; 8(6):1870-94. PubMed ID: 26593822 [TBL] [Abstract][Full Text] [Related]
15. Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the B3LYP and BP86 functionals and evaluation of the impact of empirical dispersion correction. Hirao H J Phys Chem A; 2011 Aug; 115(33):9308-13. PubMed ID: 21806069 [TBL] [Abstract][Full Text] [Related]
16. A theoretical study on C-COOH homolytic bond dissociation enthalpies. Shi J; Huang XY; Wang JP; Li R J Phys Chem A; 2010 Jun; 114(21):6263-72. PubMed ID: 20450210 [TBL] [Abstract][Full Text] [Related]
17. A unified set of experimental organometallic data used to evaluate modern theoretical methods. Raju RK; Bengali AA; Brothers EN Dalton Trans; 2016 Sep; 45(35):13766-78. PubMed ID: 27477470 [TBL] [Abstract][Full Text] [Related]
18. Accurate Prediction of Adiabatic Ionization Potentials of Organic Molecules using Quantum Chemistry Assisted Machine Learning. Dandu NK; Ward L; Assary RS; Redfern PC; Curtiss LA J Phys Chem A; 2023 Jul; 127(28):5914-5920. PubMed ID: 37406209 [TBL] [Abstract][Full Text] [Related]
19. Eliminating Systematic Errors in DFT via Connectivity-Based Hierarchy: Accurate Bond Dissociation Energies of Biodiesel Methyl Esters. Debnath S; Sengupta A; Raghavachari K J Phys Chem A; 2019 Apr; 123(16):3543-3550. PubMed ID: 30986067 [TBL] [Abstract][Full Text] [Related]
20. Benchmark DFT studies on C-CN homolytic cleavage and screening the substitution effect on bond dissociation energy. Kosar N; Ayub K; Gilani MA; Mahmood T J Mol Model; 2019 Jan; 25(2):47. PubMed ID: 30690660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]