These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 23849674)

  • 1. Continuous downstream processing of biopharmaceuticals.
    Jungbauer A
    Trends Biotechnol; 2013 Aug; 31(8):479-92. PubMed ID: 23849674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Current Scientific and Regulatory Landscape in Advancing Integrated Continuous Biopharmaceutical Manufacturing.
    Fisher AC; Kamga MH; Agarabi C; Brorson K; Lee SL; Yoon S
    Trends Biotechnol; 2019 Mar; 37(3):253-267. PubMed ID: 30241924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equipment and analytical companies meeting continuous challenges. May 20-21, 2014 Continuous Manufacturing Symposium.
    Page T; Dubina H; Fillipi G; Guidat R; Patnaik S; Poechlauer P; Shering P; Guinn M; Mcdonnell P; Johnston C
    J Pharm Sci; 2015 Mar; 104(3):821-31. PubMed ID: 25448273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-processing strategies for biologicals API manufacturing processes.
    Opitz U
    Dev Biol (Basel); 2003; 113():101-4; discussion 115-6. PubMed ID: 14620858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The future of industrial bioprocessing: batch or continuous?
    Croughan MS; Konstantinov KB; Cooney C
    Biotechnol Bioeng; 2015 Apr; 112(4):648-51. PubMed ID: 25694022
    [No Abstract]   [Full Text] [Related]  

  • 6. Future supply chains enabled by continuous processing--opportunities and challenges. May 20-21, 2014 Continuous Manufacturing Symposium.
    Srai JS; Badman C; Krumme M; Futran M; Johnston C
    J Pharm Sci; 2015 Mar; 104(3):840-9. PubMed ID: 25631279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The recovery of highly purified biopharmaceuticals from perfusion cell culture bioreactors.
    Prior CP; Doyle KR; Duffy SA; Hope JA; Moellering BJ; Prior GM; Scott RW; Tolbert WR
    J Parenter Sci Technol; 1989; 43(1):15-23. PubMed ID: 2926601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precipitation as an Enabling Technology for the Intensification of Biopharmaceutical Manufacture.
    Martinez M; Spitali M; Norrant EL; Bracewell DG
    Trends Biotechnol; 2019 Mar; 37(3):237-241. PubMed ID: 30316558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous downstream processing for high value biological products: A Review.
    Zydney AL
    Biotechnol Bioeng; 2016 Mar; 113(3):465-75. PubMed ID: 26153056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clarification technologies for monoclonal antibody manufacturing processes: Current state and future perspectives.
    Singh N; Arunkumar A; Chollangi S; Tan ZG; Borys M; Li ZJ
    Biotechnol Bioeng; 2016 Apr; 113(4):698-716. PubMed ID: 26302443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production.
    Steinebach F; Müller-Späth T; Morbidelli M
    Biotechnol J; 2016 Sep; 11(9):1126-41. PubMed ID: 27376629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational and systematic protein purification process development: the next generation.
    Nfor BK; Verhaert PD; van der Wielen LA; Hubbuch J; Ottens M
    Trends Biotechnol; 2009 Dec; 27(12):673-9. PubMed ID: 19815300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale processing of macromolecules.
    Fulton SP
    Curr Opin Biotechnol; 1994 Feb; 5(2):201-5. PubMed ID: 7764801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-use disposable technologies for biopharmaceutical manufacturing.
    Shukla AA; Gottschalk U
    Trends Biotechnol; 2013 Mar; 31(3):147-54. PubMed ID: 23178074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Downstream Processing of Monoclonal Antibodies Reveals Cost Advantages for Continuous Methods for a Broad Range of Manufacturing Scales.
    Hummel J; Pagkaliwangan M; Gjoka X; Davidovits T; Stock R; Ransohoff T; Gantier R; Schofield M
    Biotechnol J; 2019 Feb; 14(2):e1700665. PubMed ID: 29341493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. White paper on continuous bioprocessing. May 20-21, 2014 Continuous Manufacturing Symposium.
    Konstantinov KB; Cooney CL
    J Pharm Sci; 2015 Mar; 104(3):813-20. PubMed ID: 25417595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous processing for production of biopharmaceuticals.
    Rathore AS; Agarwal H; Sharma AK; Pathak M; Muthukumar S
    Prep Biochem Biotechnol; 2015; 45(8):836-49. PubMed ID: 25674930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving continuous manufacturing: technologies and approaches for synthesis, workup, and isolation of drug substance. May 20-21, 2014 Continuous Manufacturing Symposium.
    Baxendale IR; Braatz RD; Hodnett BK; Jensen KF; Johnson MD; Sharratt P; Sherlock JP; Florence AJ
    J Pharm Sci; 2015 Mar; 104(3):781-91. PubMed ID: 25470351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current state of the art in continuous bioprocessing.
    Schofield M
    Biotechnol Lett; 2018 Oct; 40(9-10):1303-1309. PubMed ID: 30006662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular targets for improved manufacturing of virus-based biopharmaceuticals in animal cells.
    Rodrigues AF; Carrondo MJ; Alves PM; Coroadinha AS
    Trends Biotechnol; 2014 Dec; 32(12):602-7. PubMed ID: 25450042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.