BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23849804)

  • 1. Potent L-lactic acid assimilation of the fermentative and heterothallic haploid yeast Saccharomyces cerevisiae NAM34-4C.
    Tomitaka M; Taguchi H; Matsuoka M; Morimura S; Kida K; Akamatsu T
    J Biosci Bioeng; 2014 Jan; 117(1):65-70. PubMed ID: 23849804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production from D-lactic acid by lactic acid-assimilating Saccharomyces cerevisiae NAM34-4C.
    Wakamatsu M; Tani T; Taguchi H; Matsuoka M; Kida K; Akamatsu T
    J Biosci Bioeng; 2013 Jul; 116(1):85-90. PubMed ID: 23419456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating.
    Mitsumasu K; Liu ZS; Tang YQ; Akamatsu T; Taguchi H; Kida K
    J Biosci Bioeng; 2014 Dec; 118(6):689-95. PubMed ID: 24958128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization.
    Tomitaka M; Taguchi H; Fukuda K; Akamatsu T; Kida K
    J Biosci Bioeng; 2013 Dec; 116(6):706-15. PubMed ID: 23810666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction, separation and identification of haploid strains from industrial brewer's yeast.
    Xu W; Wang J; Li Q
    Wei Sheng Wu Xue Bao; 2015 Jan; 55(1):22-32. PubMed ID: 25958679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.
    Kim SR; Skerker JM; Kong II; Kim H; Maurer MJ; Zhang GC; Peng D; Wei N; Arkin AP; Jin YS
    Metab Eng; 2017 Mar; 40():176-185. PubMed ID: 28216106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol.
    Benjaphokee S; Hasegawa D; Yokota D; Asvarak T; Auesukaree C; Sugiyama M; Kaneko Y; Boonchird C; Harashima S
    N Biotechnol; 2012 Feb; 29(3):379-86. PubMed ID: 21820088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic stabilization of Saccharomyces cerevisiae oenological strains by using benomyl.
    Blasco L; Feijoo-Siota L; Veiga-Crespo P; Villa TG
    Int Microbiol; 2008 Jun; 11(2):127-32. PubMed ID: 18645963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct mating between diploid sake strains of Saccharomyces cerevisiae.
    Hashimoto S; Aritomi K; Minohara T; Nishizawa Y; Hoshida H; Kashiwagi S; Akada R
    Appl Microbiol Biotechnol; 2006 Feb; 69(6):689-96. PubMed ID: 15988574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production.
    Argueso JL; Carazzolle MF; Mieczkowski PA; Duarte FM; Netto OV; Missawa SK; Galzerani F; Costa GG; Vidal RO; Noronha MF; Dominska M; Andrietta MG; Andrietta SR; Cunha AF; Gomes LH; Tavares FC; Alcarde AR; Dietrich FS; McCusker JH; Petes TD; Pereira GA
    Genome Res; 2009 Dec; 19(12):2258-70. PubMed ID: 19812109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postzygotic reproductive isolation among three Saccharomyces yeast species.
    Toyomura K; Hisatomi T
    Yeast; 2021 May; 38(5):326-335. PubMed ID: 33444464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation.
    Kim SR; Lee KS; Kong II; Lesmana A; Lee WH; Seo JH; Kweon DH; Jin YS
    J Biotechnol; 2013 Mar; 164(1):105-11. PubMed ID: 23376240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The RAPD analysis of haploid strain of thermotolearnt yeast].
    Zhu XF; Wu XC; Lin L; Zeng YZ
    Sheng Wu Gong Cheng Xue Bao; 2001 Sep; 17(5):557-60. PubMed ID: 11797221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene.
    Skory CD
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):22-7. PubMed ID: 12545382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.
    Katou T; Kitagaki H; Akao T; Shimoi H
    Yeast; 2008 Nov; 25(11):799-807. PubMed ID: 19061192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Saccharomyces cerevisiae wine strains for breeding through fermentation efficiency and tetrad analysis.
    Fernández-González M; Úbeda JF; Briones AI
    Curr Microbiol; 2015 Mar; 70(3):441-9. PubMed ID: 25447272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endomitotic diploidization of Saccharomyces cerevisiae by heat treatment during spore germination.
    Tani Y; Tomohiro Y; Miyata A; Furukawa K; Hayashida S
    Yeast; 1993 May; 9(5):519-21. PubMed ID: 8322513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of homothallic Saccharomyces cerevisiae strain mating during must fermentation.
    Ambrona J; Ramírez M
    Appl Environ Microbiol; 2007 Apr; 73(8):2486-90. PubMed ID: 17322328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae.
    Kaboli S; Miyamoto T; Sunada K; Sasano Y; Sugiyama M; Harashima S
    J Biosci Bioeng; 2016 Jun; 121(6):638-644. PubMed ID: 26690924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.