BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3202 related articles for article (PubMed ID: 23849981)

  • 1. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.
    Gilbert LA; Larson MH; Morsut L; Liu Z; Brar GA; Torres SE; Stern-Ginossar N; Brandman O; Whitehead EH; Doudna JA; Lim WA; Weissman JS; Qi LS
    Cell; 2013 Jul; 154(2):442-51. PubMed ID: 23849981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR RNA-guided activation of endogenous human genes.
    Maeder ML; Linder SJ; Cascio VM; Fu Y; Ho QH; Joung JK
    Nat Methods; 2013 Oct; 10(10):977-9. PubMed ID: 23892898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells.
    Du D; Qi LS
    Cold Spring Harb Protoc; 2016 Jan; 2016(1):pdb.top086835. PubMed ID: 26729914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR Technology for Genome Activation and Repression in Mammalian Cells.
    Du D; Qi LS
    Cold Spring Harb Protoc; 2016 Jan; 2016(1):pdb.prot090175. PubMed ID: 26729910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPRi is not strand-specific at all loci and redefines the transcriptional landscape.
    Howe FS; Russell A; Lamstaes AR; El-Sagheer A; Nair A; Brown T; Mellor J
    Elife; 2017 Oct; 6():. PubMed ID: 29058669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR interference (CRISPRi) for sequence-specific control of gene expression.
    Larson MH; Gilbert LA; Wang X; Lim WA; Weissman JS; Qi LS
    Nat Protoc; 2013 Nov; 8(11):2180-96. PubMed ID: 24136345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.
    Qi LS; Larson MH; Gilbert LA; Doudna JA; Weissman JS; Arkin AP; Lim WA
    Cell; 2013 Feb; 152(5):1173-83. PubMed ID: 23452860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds.
    Zalatan JG; Lee ME; Almeida R; Gilbert LA; Whitehead EH; La Russa M; Tsai JC; Weissman JS; Dueber JE; Qi LS; Lim WA
    Cell; 2015 Jan; 160(1-2):339-50. PubMed ID: 25533786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans.
    Dhamad AE; Lessner DJ
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences.
    Karlson CKS; Mohd-Noor SN; Nolte N; Tan BC
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus.
    Guzzo M; Castro LK; Reisch CR; Guo MS; Laub MT
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens.
    Kim SK; Kim H; Ahn WC; Park KH; Woo EJ; Lee DH; Lee SG
    ACS Synth Biol; 2017 Jul; 6(7):1273-1282. PubMed ID: 28375596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evaluation of active transcriptional repressor domain for CRISPRi in plants.
    Xu L; Sun B; Liu S; Gao X; Zhou H; Li F; Li Y
    Gene; 2023 Jan; 851():146967. PubMed ID: 36261092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative and modularized CRISPR/dCas9-dCpf1 dual function system in
    Feng Q; Ning X; Qin L; Li J; Li C
    Front Bioeng Biotechnol; 2023; 11():1218832. PubMed ID: 38026848
    [No Abstract]   [Full Text] [Related]  

  • 20. Gene silencing by CRISPR interference in mycobacteria.
    Choudhary E; Thakur P; Pareek M; Agarwal N
    Nat Commun; 2015 Feb; 6():6267. PubMed ID: 25711368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 161.